Math Problem Statement

Tuliskan tabel kebenaran dari setiap proposisi: a. (¬p ∨ q) ∨ p, b. (p ∨ q) ∧ ¬p, c. (p ∨ q) ∨ (¬p ∨ q)

Solution

The image contains the following problem in Indonesian:

Problem: "7. Tuliskan tabel kebenaran dari setiap proposisi:"

This translates to: "Write the truth table for each proposition:"

The propositions given are:

  • a. (¬pq)p(\neg p \vee q) \vee p
  • b. (pq)¬p(p \vee q) \land \neg p
  • c. (pq)(¬pq)(p \vee q) \vee (\neg p \vee q)

I'll now create the truth tables for each of these propositions.Here are the truth tables for each proposition:

ppqq¬p\neg ppqp \vee q¬pq\neg p \vee q(¬pq)p(\neg p \vee q) \vee p(pq)¬p(p \vee q) \land \neg p(pq)(¬pq)(p \vee q) \vee (\neg p \vee q)
TrueTrueFalseTrueTrueTrueFalseTrue
TrueFalseFalseTrueFalseTrueFalseTrue
FalseTrueTrueTrueTrueTrueTrueTrue
FalseFalseTrueFalseTrueTrueFalseTrue

Explanation:

  • a. (¬pq)p(\neg p \vee q) \vee p: This evaluates to True for all combinations of pp and qq.
  • b. (pq)¬p(p \vee q) \land \neg p: This is only True when pp is False and qq is True, meaning pp must be false and qq true for the conjunction to hold.
  • c. (pq)(¬pq)(p \vee q) \vee (\neg p \vee q): This evaluates to True for all combinations of pp and qq.

Would you like further clarification on any specific part?

Here are some related questions:

  1. How is the negation of a proposition applied in a truth table?
  2. Why does the disjunction pqp \vee q give True when either pp or qq is True?
  3. Can you explain why the conjunction pqp \land q is only true when both are true?
  4. How does the truth table change if additional logical operators are included?
  5. Can you simplify the given propositions using logical identities?

Tip:

Always start with the simplest logical components (like negation or disjunction) when constructing truth tables, then build up to more complex expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logic
Truth Tables
Propositional Logic

Formulas

Disjunction (p ∨ q)
Conjunction (p ∧ q)
Negation (¬p)

Theorems

De Morgan's Laws
Associative and Distributive Laws in Logic

Suitable Grade Level

Undergraduate or High School Logic Courses