Math Problem Statement

give me the answer in mathmwtical turm not theorytical turm

Construct the truth table of the following: ~ (p ∧ q) ∨ q, p → (p ∨ q), p ∧ (q ∧ ~p), and Exclusive OR.

Solution

To construct the truth table for each of the logical statements, let’s analyze each expression using the truth values of pp and qq.

Let:

  • pp: True or False
  • qq: True or False

Truth Table Layout

We'll consider all possible combinations of pp and qq: (p,q)=(T,T),(T,F),(F,T),(F,F)(p, q) = (T, T), (T, F), (F, T), (F, F).

Expressions to Evaluate

  1. I. (pq)q\sim(p \land q) \lor q

    • This is evaluated by finding pqp \land q, then negating it (pq)\sim(p \land q), and finally applying \lor with qq.
  2. II. p(pq)p \rightarrow (p \lor q)

    • This involves finding pqp \lor q and then evaluating the implication p(pq)p \rightarrow (p \lor q).
  3. III. p(qp)p \land (q \land \sim p)

    • This requires finding p\sim p, then qpq \land \sim p, and finally evaluating p(qp)p \land (q \land \sim p).
  4. IV. "Exclusive OR" (often denoted as pqp \oplus q)

    • The exclusive OR (XOR) is true when exactly one of pp or qq is true, but not both.

Truth Table

Let's construct this step-by-step.

ppqqpqp \land q(pq)\sim(p \land q)(pq)q\sim(p \land q) \lor qpqp \lor qp(pq)p \rightarrow (p \lor q)p\sim pqpq \land \sim pp(qp)p \land (q \land \sim p)pqp \oplus q
TTTFTTTFFFF
TFFTTTTFFFT
FTFTTTTTTFT
FFFTFFTTFFF

Results for Each Expression

  • I. (pq)q\sim(p \land q) \lor q: Column (pq)q\sim(p \land q) \lor q
  • II. p(pq)p \rightarrow (p \lor q): Column p(pq)p \rightarrow (p \lor q)
  • III. p(qp)p \land (q \land \sim p): Column p(qp)p \land (q \land \sim p)
  • IV. Exclusive OR (pqp \oplus q): Column pqp \oplus q

Would you like further explanations or have any questions?


Related Questions

  1. How does the negation operator affect a conjunction or disjunction?
  2. How do we interpret the implication pqp \rightarrow q in truth tables?
  3. Can we generalize exclusive OR to more than two variables?
  4. How do we simplify logical expressions using identities?
  5. What are common pitfalls in constructing truth tables?

Tip

When constructing truth tables, it’s useful to break down complex expressions into smaller components. This allows each sub-expression’s truth value to be calculated step-by-step, ensuring accuracy.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logic
Truth Tables
Propositional Logic

Formulas

~ (p ∧ q) ∨ q
p → (p ∨ q)
p ∧ (q ∧ ~p)
Exclusive OR (p ⊕ q)

Theorems

Truth Table Construction
Logical Connectives
Implication

Suitable Grade Level

Grades 11-12