Math Problem Statement

Evaluate the triple integral of f(x,y,z)=z(x^2+y^2+z^2)^-3/2 over the part of the ball x^2+y^2+z^2<=25 defined by z>=2.5 .

Solution

To evaluate the triple integral

Dz(x2+y2+z2)3/2dV,\iiint_{D} \frac{z}{(x^2 + y^2 + z^2)^{3/2}} \, dV,

where DD is the region defined by x2+y2+z225x^2 + y^2 + z^2 \leq 25 and z2.5z \geq 2.5, it's advantageous to switch to spherical coordinates. In spherical coordinates, we have:

  • x=ρsinθcosϕx = \rho \sin\theta \cos\phi
  • y=ρsinθsinϕy = \rho \sin\theta \sin\phi
  • z=ρcosθz = \rho \cos\theta
  • The Jacobian (volume element) dV=ρ2sinθdρdθdϕdV = \rho^2 \sin\theta \, d\rho \, d\theta \, d\phi

With these substitutions, the function f(x,y,z)=z(x2+y2+z2)3/2f(x, y, z) = \frac{z}{(x^2 + y^2 + z^2)^{3/2}} becomes:

f(ρ,θ,ϕ)=ρcosθρ3=cosθρ2.f(\rho, \theta, \phi) = \frac{\rho \cos\theta}{\rho^3} = \frac{\cos\theta}{\rho^2}.

Thus, the integral becomes:

Dcosθρ2ρ2sinθdρdθdϕ=Dcosθsinθdρdθdϕ.\iiint_{D} \frac{\cos\theta}{\rho^2} \cdot \rho^2 \sin\theta \, d\rho \, d\theta \, d\phi = \iiint_{D} \cos\theta \sin\theta \, d\rho \, d\theta \, d\phi.

The limits for ρ\rho, θ\theta, and ϕ\phi are as follows:

  1. ρ\rho ranges from 52\frac{5}{2} (corresponding to z=2.5z = 2.5) to 5 (the boundary of the sphere).
  2. θ\theta ranges from 0 to arccos(12)\arccos\left(\frac{1}{2}\right), so that z=ρcosθ2.5z = \rho \cos \theta \geq 2.5.
  3. ϕ\phi ranges from 0 to 2π2\pi.

So the integral becomes:

02π0arccos(12)525cosθsinθdρdθdϕ.\int_0^{2\pi} \int_0^{\arccos\left(\frac{1}{2}\right)} \int_{\frac{5}{2}}^5 \cos\theta \sin\theta \, d\rho \, d\theta \, d\phi.

Evaluating the Integral

  1. Integrate with respect to ρ\rho: 525dρ=552=52.\int_{\frac{5}{2}}^5 \, d\rho = 5 - \frac{5}{2} = \frac{5}{2}.

  2. Integrate with respect to θ\theta and ϕ\phi:

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Triple Integral
Spherical Coordinates
Vector Calculus
Integration in 3D

Formulas

f(x, y, z) = z(x^2 + y^2 + z^2)^{-3/2}
Spherical Coordinates: x = ρ sin(θ) cos(φ), y = ρ sin(θ) sin(φ), z = ρ cos(θ)
Jacobian: dV = ρ^2 sin(θ) dρ dθ dφ

Theorems

Change of variables in integrals
Spherical coordinate transformations

Suitable Grade Level

Grades 11-12