Math Problem Statement

Evaluate the triple integral

B

1 −

x2 + y2 + z2

dV over the solid B =

(x, y, z) | x2 + y2 + z2 ≤ 9, y ≥ 0, z ≥ 0

Solution

We are tasked with evaluating the triple integral:

B(1x2y2z2)dV,\iiint_B \left(1 - x^2 - y^2 - z^2 \right) \, dV,

where BB is the region defined by:

B={(x,y,z)x2+y2+z29,y0,z0}.B = \{(x, y, z) \mid x^2 + y^2 + z^2 \leq 9, \, y \geq 0, \, z \geq 0\}.

This is the portion of the ball x2+y2+z29x^2 + y^2 + z^2 \leq 9 in the first octant (where y0y \geq 0 and z0z \geq 0).

Step 1: Switch to spherical coordinates

In spherical coordinates, the transformations are:

x=ρsinϕcosθ,y=ρsinϕsinθ,z=ρcosϕ,x = \rho \sin\phi \cos\theta, \quad y = \rho \sin\phi \sin\theta, \quad z = \rho \cos\phi, with: ρ0,0ϕπ2,0θπ2.\rho \geq 0, \quad 0 \leq \phi \leq \frac{\pi}{2}, \quad 0 \leq \theta \leq \frac{\pi}{2}.

The Jacobian for the spherical transformation is:

dV=ρ2sinϕdρdϕdθ.dV = \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta.

The region BB corresponds to 0ρ30 \leq \rho \leq 3, 0ϕπ20 \leq \phi \leq \frac{\pi}{2}, and 0θπ20 \leq \theta \leq \frac{\pi}{2}.

Step 2: Rewrite the integral

In spherical coordinates, the integrand 1x2y2z21 - x^2 - y^2 - z^2 becomes:

1ρ2,1 - \rho^2,

since x2+y2+z2=ρ2x^2 + y^2 + z^2 = \rho^2 in spherical coordinates.

The integral becomes:

B(1x2y2z2)dV=0π/20π/203(1ρ2)ρ2sinϕdρdϕdθ.\iiint_B \left(1 - x^2 - y^2 - z^2 \right) \, dV = \int_0^{\pi/2} \int_0^{\pi/2} \int_0^3 \left(1 - \rho^2 \right) \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta.

Step 3: Separate the variables

The integral separates into three parts:

  1. 0π/2sinϕdϕ\int_0^{\pi/2} \sin\phi \, d\phi,
  2. 0π/2dθ\int_0^{\pi/2} d\theta,
  3. 03(1ρ2)ρ2dρ\int_0^3 \left(1 - \rho^2 \right) \rho^2 \, d\rho.

Step 4: Solve each integral

(a) Compute 0π/2sinϕdϕ\int_0^{\pi/2} \sin\phi \, d\phi:

0π/2sinϕdϕ=[cosϕ]0π/2=cos(π2)+cos(0)=0+1=1.\int_0^{\pi/2} \sin\phi \, d\phi = \left[-\cos\phi\right]_0^{\pi/2} = -\cos\left(\frac{\pi}{2}\right) + \cos(0) = 0 + 1 = 1.

(b) Compute 0π/2dθ\int_0^{\pi/2} d\theta:

0π/2dθ=θ0π/2=π2.\int_0^{\pi/2} d\theta = \theta \big|_0^{\pi/2} = \frac{\pi}{2}.

(c) Compute 03(1ρ2)ρ2dρ\int_0^3 \left(1 - \rho^2 \right) \rho^2 \, d\rho:

Expand the integrand: (1ρ2)ρ2=ρ2ρ4.\left(1 - \rho^2 \right) \rho^2 = \rho^2 - \rho^4.

Now integrate term by term: 03(ρ2ρ4)dρ=03ρ2dρ03ρ4dρ.\int_0^3 \left(\rho^2 - \rho^4 \right) d\rho = \int_0^3 \rho^2 \, d\rho - \int_0^3 \rho^4 \, d\rho.

For 03ρ2dρ\int_0^3 \rho^2 \, d\rho: 03ρ2dρ=[ρ33]03=3330=9.\int_0^3 \rho^2 \, d\rho = \left[\frac{\rho^3}{3}\right]_0^3 = \frac{3^3}{3} - 0 = 9.

For 03ρ4dρ\int_0^3 \rho^4 \, d\rho: 03ρ4dρ=[ρ55]03=3550=2435.\int_0^3 \rho^4 \, d\rho = \left[\frac{\rho^5}{5}\right]_0^3 = \frac{3^5}{5} - 0 = \frac{243}{5}.

Thus: 03(ρ2ρ4)dρ=92435=4552435=1985.\int_0^3 \left(\rho^2 - \rho^4 \right) d\rho = 9 - \frac{243}{5} = \frac{45}{5} - \frac{243}{5} = -\frac{198}{5}.

Step 5: Combine results

The total integral is:

B(1x2y2z2)dV=(1)(π2)(1985).\iiint_B \left(1 - x^2 - y^2 - z^2 \right) \, dV = \left(1\right) \cdot \left(\frac{\pi}{2}\right) \cdot \left(-\frac{198}{5}\right).

Simplify: B(1x2y2z2)dV=198π10=99π5.\iiint_B \left(1 - x^2 - y^2 - z^2 \right) \, dV = -\frac{198\pi}{10} = -\frac{99\pi}{5}.

Final Answer:

99π5\boxed{-\frac{99\pi}{5}}


Let me know if you'd like any clarifications or further explanations!

5 Related Questions:

  1. How would the limits of integration change if the region y0y \geq 0 were removed?
  2. What is the physical interpretation of the integrand 1x2y2z21 - x^2 - y^2 - z^2?
  3. How would this integral change if the ball's radius were RR instead of 3?
  4. How do we handle such integrals in Cartesian versus spherical coordinates?
  5. Can the integral be solved symbolically without converting to spherical coordinates?

One Tip:

Always double-check the bounds and Jacobian when converting to spherical coordinates to avoid errors in volume scaling!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Spherical Coordinates
Triple Integrals

Formulas

Spherical coordinates transformations: x = ρ sin(φ) cos(θ), y = ρ sin(φ) sin(θ), z = ρ cos(φ)
Volume element in spherical coordinates: dV = ρ^2 sin(φ) dρ dφ dθ
Integral bounds for a sphere: ρ from 0 to R, φ from 0 to π/2, θ from 0 to π/2

Theorems

Change of Variables Theorem
Spherical Symmetry

Suitable Grade Level

Undergraduate Calculus (Grades 11-12 and College)