Math Problem Statement

i. Calculate tan 2θ ii. Draw the graphs of tan 2θ and tan θ iii. Calculate tan 4θ iv. Calculate sin (A+B) v. Calculate cos (θ/2) vi. Calculate sin (α/2)

{"ii":"Draw the graphs of tan(2θ) and tan(θ)","vi":"Calculate sin(α/2)","v":"Calculate cos(θ/2)","iii":"Calculate tan(4θ)","i":"Calculate tan(2θ)","iv":"Calculate sin(A+B)"}

Solution

Let's work through the problem step by step, given the right triangle ABCABC where AB=8AB = 8, BC=6BC = 6, and ABC=90\angle ABC = 90^\circ.

Step 1: Determine ACAC

To find the hypotenuse ACAC, we use the Pythagorean theorem:

AC=AB2+BC2=82+62=64+36=100=10AC = \sqrt{AB^2 + BC^2} = \sqrt{8^2 + 6^2} = \sqrt{64 + 36} = \sqrt{100} = 10

Now, we know AC=10AC = 10.

Step 2: Find tan(θ)\tan(\theta) and tan(α)\tan(\alpha)

  1. tan(θ)\tan(\theta):

    • tan(θ)=ABBC=86=43\tan(\theta) = \frac{AB}{BC} = \frac{8}{6} = \frac{4}{3}
  2. tan(α)\tan(\alpha):

    • tan(α)=BCAB=68=34\tan(\alpha) = \frac{BC}{AB} = \frac{6}{8} = \frac{3}{4}

With these values, we can proceed to solve the questions.

i. Calculate tan(2θ)\tan(2\theta)

The double-angle formula for tangent is:

tan(2θ)=2tan(θ)1tan2(θ)\tan(2\theta) = \frac{2 \tan(\theta)}{1 - \tan^2(\theta)}

tan(2θ)=2431(43)2=831169\tan(2\theta) = \frac{2 \cdot \frac{4}{3}}{1 - \left(\frac{4}{3}\right)^2} = \frac{\frac{8}{3}}{1 - \frac{16}{9}}

tan(2θ)=8379=247\tan(2\theta) = \frac{\frac{8}{3}}{-\frac{7}{9}} = -\frac{24}{7}

ii. Draw the graphs of tan(2θ)\tan(2\theta) and tan(θ)\tan(\theta)

To draw the graphs of tan(θ)\tan(\theta) and tan(2θ)\tan(2\theta), you'd plot them over an interval such as 0θ<π20 \leq \theta < \frac{\pi}{2}. These graphs will have vertical asymptotes at certain points:

  • tan(θ)\tan(\theta) has asymptotes where θ=π2+nπ\theta = \frac{\pi}{2} + n\pi.
  • tan(2θ)\tan(2\theta) has asymptotes where 2θ=π2+nπ2\theta = \frac{\pi}{2} + n\pi, hence θ=π4+nπ2\theta = \frac{\pi}{4} + \frac{n\pi}{2}.

iii. Calculate tan(4θ)\tan(4\theta)

The double-angle formula can be applied again:

tan(4θ)=2tan(2θ)1tan2(2θ)\tan(4\theta) = \frac{2 \tan(2\theta)}{1 - \tan^2(2\theta)}

tan(4θ)=2(247)1(247)2\tan(4\theta) = \frac{2 \cdot \left(-\frac{24}{7}\right)}{1 - \left(-\frac{24}{7}\right)^2}

This calculation involves substituting tan(2θ)=247\tan(2\theta) = -\frac{24}{7} and simplifying.

iv. Calculate sin(A+B)\sin(A + B)

Since A+B=90A + B = 90^\circ, and sin(90)=1\sin(90^\circ) = 1:

sin(A+B)=1\sin(A + B) = 1

v. Calculate cos(θ2)\cos\left(\frac{\theta}{2}\right)

We use the half-angle formula:

cos(θ2)=1+cos(θ)2\cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos(\theta)}{2}}

To find cos(θ)\cos(\theta), note:

cos(θ)=BCAC=610=35\cos(\theta) = \frac{BC}{AC} = \frac{6}{10} = \frac{3}{5}

cos(θ2)=1+352=852=45\cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \frac{3}{5}}{2}} = \sqrt{\frac{\frac{8}{5}}{2}} = \sqrt{\frac{4}{5}}

vi. Calculate sin(α2)\sin\left(\frac{\alpha}{2}\right)

The half-angle formula for sine is:

sin(α2)=1cos(α)2\sin\left(\frac{\alpha}{2}\right) = \sqrt{\frac{1 - \cos(\alpha)}{2}}

Now, cos(α)=810=45\cos(\alpha) = \frac{8}{10} = \frac{4}{5}.

sin(α2)=1452=152=110\sin\left(\frac{\alpha}{2}\right) = \sqrt{\frac{1 - \frac{4}{5}}{2}} = \sqrt{\frac{\frac{1}{5}}{2}} = \sqrt{\frac{1}{10}}


Would you like more details on any of these steps? Here are some related questions to further explore:

  1. How do we derive the double-angle formula for tangent?
  2. What are the asymptotes for the graphs of tan(θ)\tan(\theta) and tan(2θ)\tan(2\theta)?
  3. How can we verify the calculation of tan(4θ)\tan(4\theta) by using exact values?
  4. Why is sin(A+B)=1\sin(A + B) = 1 in a right triangle?
  5. How do we interpret and apply half-angle formulas for trigonometric functions?

Tip: When working with trigonometric identities, always start by identifying the known sides and angles of the triangle; this simplifies the application of formulas!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Right Triangle
Tangent Function
Sine Function
Cosine Function

Formulas

Pythagorean Theorem: a² + b² = c²
Double Angle Formula for Tangent: tan(2θ) = 2tan(θ) / (1 - tan²(θ))
Half-Angle Formulas for Sine and Cosine
Basic Trig Identities: sin(90°) = 1

Theorems

Pythagorean Theorem
Trigonometric Identities

Suitable Grade Level

Grades 9-12