Math Problem Statement

Use the given information to find ​(a) sine left parenthesis s plus t right parenthesis​, ​(b) tangent left parenthesis s plus t right parenthesis​, and ​(c) the quadrant of s plus t. cosine s equals negative three fifths and sine t equals negative StartFraction 12 Over 13 EndFraction ​, s and t in quadrant III

Solution

To solve the problem, let's break it into steps:

Given Information:

  1. cos(s)=35\cos(s) = -\frac{3}{5}, ss is in Quadrant III.
  2. sin(t)=1213\sin(t) = -\frac{12}{13}, tt is in Quadrant III.

Step 1: Determine missing trigonometric values for ss and tt.

For ss:

Using the Pythagorean identity: sin2(s)+cos2(s)=1\sin^2(s) + \cos^2(s) = 1 Substitute cos(s)=35\cos(s) = -\frac{3}{5}: sin2(s)+(35)2=1\sin^2(s) + \left(-\frac{3}{5}\right)^2 = 1 sin2(s)+925=1\sin^2(s) + \frac{9}{25} = 1 sin2(s)=1925=1625\sin^2(s) = 1 - \frac{9}{25} = \frac{16}{25} \sin(s) = -\frac{4}{5} \quad \text{(since s is in Quadrant III, where sine is negative)}.

For tt:

Using the Pythagorean identity: sin2(t)+cos2(t)=1\sin^2(t) + \cos^2(t) = 1 Substitute sin(t)=1213\sin(t) = -\frac{12}{13}: (1213)2+cos2(t)=1\left(-\frac{12}{13}\right)^2 + \cos^2(t) = 1 144169+cos2(t)=1\frac{144}{169} + \cos^2(t) = 1 cos2(t)=1144169=25169\cos^2(t) = 1 - \frac{144}{169} = \frac{25}{169} \cos(t) = -\frac{5}{13} \quad \text{(since t is in Quadrant III, where cosine is negative)}.

Step 2: Use the sum formulas to find the requested values.

(a) sin(s+t)\sin(s + t):

sin(s+t)=sin(s)cos(t)+cos(s)sin(t)\sin(s + t) = \sin(s)\cos(t) + \cos(s)\sin(t) Substitute the known values: sin(s+t)=(45)(513)+(35)(1213)\sin(s + t) = \left(-\frac{4}{5}\right)\left(-\frac{5}{13}\right) + \left(-\frac{3}{5}\right)\left(-\frac{12}{13}\right) sin(s+t)=2065+3665=5665.\sin(s + t) = \frac{20}{65} + \frac{36}{65} = \frac{56}{65}.

(b) tan(s+t)\tan(s + t):

tan(s+t)=tan(s)+tan(t)1tan(s)tan(t).\tan(s + t) = \frac{\tan(s) + \tan(t)}{1 - \tan(s)\tan(t)}. First, find tan(s)\tan(s) and tan(t)\tan(t): tan(s)=sin(s)cos(s)=4535=43,\tan(s) = \frac{\sin(s)}{\cos(s)} = \frac{-\frac{4}{5}}{-\frac{3}{5}} = \frac{4}{3}, tan(t)=sin(t)cos(t)=1213513=125.\tan(t) = \frac{\sin(t)}{\cos(t)} = \frac{-\frac{12}{13}}{-\frac{5}{13}} = \frac{12}{5}. Now substitute into the formula: tan(s+t)=43+1251(43125).\tan(s + t) = \frac{\frac{4}{3} + \frac{12}{5}}{1 - \left(\frac{4}{3} \cdot \frac{12}{5}\right)}. Simplify the numerator: 43+125=2015+3615=5615.\frac{4}{3} + \frac{12}{5} = \frac{20}{15} + \frac{36}{15} = \frac{56}{15}. Simplify the denominator: 1(43125)=14815=15154815=3315.1 - \left(\frac{4}{3} \cdot \frac{12}{5}\right) = 1 - \frac{48}{15} = \frac{15}{15} - \frac{48}{15} = -\frac{33}{15}. Thus: tan(s+t)=56153315=5633.\tan(s + t) = \frac{\frac{56}{15}}{-\frac{33}{15}} = -\frac{56}{33}.

(c) Quadrant of s+ts + t:

Since both ss and tt are in Quadrant III, adding two angles in the same quadrant results in an angle in Quadrant II (180<s+t<270180^\circ < s + t < 270^\circ).


Final Answers:

  1. sin(s+t)=5665\sin(s + t) = \frac{56}{65},
  2. tan(s+t)=5633\tan(s + t) = -\frac{56}{33},
  3. Quadrant of s+ts + t: Quadrant II.

Do you have questions or need further clarification?

Related Questions:

  1. What is the cosine of s+ts + t?
  2. How would the results change if ss and tt were in Quadrant IV instead of III?
  3. Can you verify tan(s+t)\tan(s + t) using alternative identities?
  4. How do you determine the reference angle for s+ts + t?
  5. What are the exact decimal values of sin(s+t)\sin(s + t) and tan(s+t)\tan(s + t)?

Tip:

Always confirm the signs of trigonometric values based on the quadrant to avoid calculation errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Sum and Difference Formulas
Quadrant Analysis

Formulas

sin(s + t) = sin(s)cos(t) + cos(s)sin(t)
tan(s + t) = (tan(s) + tan(t)) / (1 - tan(s)tan(t))
sin^2(x) + cos^2(x) = 1

Theorems

Pythagorean Identity
Sum and Difference Identities for Trigonometric Functions

Suitable Grade Level

Grades 11-12