Math Problem Statement
直線y=axが放物線y=x^2-2x+2に異なる2点P,Qで交わるとき、点P,Qと点R(1,0)の作る三角形の重心をGとする。aを動かしたときの点Gの軌跡を求めよ。
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Analytic Geometry
Quadratic Equations
Centroid of a Triangle
Parametric Equations
Formulas
Intersection points of a line and a parabola: ax = x^2 - 2x + 2
Quadratic equation: x^2 - (2 + a)x + 2 = 0
Centroid formula: G = ((x1 + x2 + x3)/3, (y1 + y2 + y3)/3)
Trajectory of G: Y = 3X^2 - 4X + 1
Theorems
Discriminant of a quadratic equation
Sum and product of roots of a quadratic equation
Suitable Grade Level
Grades 11-12