Math Problem Statement

Find the Taylor polynomial T4(x) and use the Error Bound to find the maximum possible size of the error.

f(x)=x11/2,a=1,x=1.4

(Use symbolic notation and fractions where needed.)

(Round your answer to three decimal places.)

{:|f(1.4)-T4(1.4)|≤◻,]×10-2

Solution

We are tasked with finding the 4th-degree Taylor polynomial T4(x)T_4(x) for f(x)=x11/2f(x) = x^{11/2}, centered at a=1a = 1, and using the Error Bound to find the maximum possible size of the error at x=1.4x = 1.4.


Step 1: Compute derivatives of f(x)f(x)

The function is f(x)=x11/2f(x) = x^{11/2}. Its derivatives are:

  1. f(x)=112x9/2f'(x) = \frac{11}{2} x^{9/2}
  2. f(x)=1194x7/2=994x7/2f''(x) = \frac{11 \cdot 9}{4} x^{7/2} = \frac{99}{4} x^{7/2}
  3. f(x)=11978x5/2=6938x5/2f'''(x) = \frac{11 \cdot 9 \cdot 7}{8} x^{5/2} = \frac{693}{8} x^{5/2}
  4. f(4)(x)=1197516x3/2=346516x3/2f^{(4)}(x) = \frac{11 \cdot 9 \cdot 7 \cdot 5}{16} x^{3/2} = \frac{3465}{16} x^{3/2}

Step 2: Evaluate derivatives at a=1a = 1

At x=1x = 1:

  1. f(1)=111/2=1f(1) = 1^{11/2} = 1
  2. f(1)=11219/2=112f'(1) = \frac{11}{2} \cdot 1^{9/2} = \frac{11}{2}
  3. f(1)=99417/2=994f''(1) = \frac{99}{4} \cdot 1^{7/2} = \frac{99}{4}
  4. f(1)=693815/2=6938f'''(1) = \frac{693}{8} \cdot 1^{5/2} = \frac{693}{8}
  5. f(4)(1)=34651613/2=346516f^{(4)}(1) = \frac{3465}{16} \cdot 1^{3/2} = \frac{3465}{16}

Step 3: Write the Taylor polynomial T4(x)T_4(x)

The Taylor polynomial centered at a=1a = 1 is: T4(x)=f(1)+f(1)(x1)+f(1)2!(x1)2+f(1)3!(x1)3+f(4)(1)4!(x1)4T_4(x) = f(1) + f'(1)(x - 1) + \frac{f''(1)}{2!}(x - 1)^2 + \frac{f'''(1)}{3!}(x - 1)^3 + \frac{f^{(4)}(1)}{4!}(x - 1)^4

Substitute the evaluated derivatives: T4(x)=1+112(x1)+99412(x1)2+693816(x1)3+346516124(x1)4T_4(x) = 1 + \frac{11}{2}(x - 1) + \frac{99}{4} \cdot \frac{1}{2}(x - 1)^2 + \frac{693}{8} \cdot \frac{1}{6}(x - 1)^3 + \frac{3465}{16} \cdot \frac{1}{24}(x - 1)^4

Simplify coefficients: T4(x)=1+112(x1)+998(x1)2+23116(x1)3+1155128(x1)4T_4(x) = 1 + \frac{11}{2}(x - 1) + \frac{99}{8}(x - 1)^2 + \frac{231}{16}(x - 1)^3 + \frac{1155}{128}(x - 1)^4


Step 4: Compute the error bound

The error bound for the Taylor polynomial is given by: f(x)T4(x)f(5)(c)5!xa5|f(x) - T_4(x)| \leq \frac{|f^{(5)}(c)|}{5!} |x - a|^5 for some cc in (1,1.4)(1, 1.4).

  1. Compute f(5)(x)f^{(5)}(x): f(5)(x)=11975332x1/2=1039532x1/2f^{(5)}(x) = \frac{11 \cdot 9 \cdot 7 \cdot 5 \cdot 3}{32} x^{1/2} = \frac{10395}{32} x^{1/2}

  2. Find the maximum f(5)(c)|f^{(5)}(c)| for c(1,1.4)c \in (1, 1.4): Since f(5)(x)f^{(5)}(x) is increasing for x>0x > 0, the maximum occurs at c=1.4c = 1.4: f(5)(1.4)=10395321.4=10395321.183f^{(5)}(1.4) = \frac{10395}{32} \sqrt{1.4} = \frac{10395}{32} \cdot 1.183

  3. Compute the error bound: f(x)T4(x)f(5)(1.4)1201.415|f(x) - T_4(x)| \leq \frac{f^{(5)}(1.4)}{120} |1.4 - 1|^5 =10395321.183120(0.4)5= \frac{\frac{10395}{32} \cdot 1.183}{120} (0.4)^5 =12296.68538400.01024= \frac{12296.685}{3840} \cdot 0.01024 =0.0327= 0.0327


Final Answer

  1. T4(1.4)=1+112(0.4)+998(0.4)2+23116(0.4)3+1155128(0.4)4=2.066T_4(1.4) = 1 + \frac{11}{2}(0.4) + \frac{99}{8}(0.4)^2 + \frac{231}{16}(0.4)^3 + \frac{1155}{128}(0.4)^4 = 2.066
  2. Error Bound: f(1.4)T4(1.4)0.033or 3.3×102|f(1.4) - T_4(1.4)| \leq 0.033 \quad \text{or } 3.3 \times 10^{-2}

Would you like further clarification or details on any step?


Related Questions:

  1. What is the significance of the error bound in Taylor polynomial approximations?
  2. How does the choice of aa affect the accuracy of a Taylor polynomial?
  3. What happens if we compute T5(x)T_5(x) instead of T4(x)T_4(x) in this problem?
  4. How would you calculate the exact value of f(1.4)f(1.4) to compare it with T4(1.4)T_4(1.4)?
  5. Why does the error increase as xa|x - a| increases?

Tip: For better accuracy, always use software or tools to compute factorials and derivatives when working with higher-degree Taylor polynomials.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Taylor series expansion
Error estimation
Derivatives of power functions

Formulas

Taylor polynomial: T_n(x) = f(a) + f'(a)(x - a) + ... + f^(n)(a) / n! * (x - a)^n
Error Bound: |f(x) - T_n(x)| ≤ |f^(n+1)(c)| / (n+1)! * |x - a|^(n+1)

Theorems

Taylor's theorem
Mean value theorem for integrals (used in error estimation)

Suitable Grade Level

Undergraduate (Calculus I or II)