Math Problem Statement

Find the Taylor polynomial T4(x) and use the Error Bound to find the maximum possible size of the error.

f(x)=x112,a=1,x=1.4

(Use symbolic notation and fractions where needed.)

(Round your answer to three decimal places.)

{:|f(1.4)-T4(1.4)|≤◻,]×10-2

Solution

We aim to find the 4th-degree Taylor polynomial T4(x)T_4(x) for f(x)=x1/12f(x) = x^{1/12} centered at a=1a = 1, and then calculate the error bound at x=1.4x = 1.4.


Step 1: Compute the derivatives of f(x)f(x)

The function is f(x)=x1/12f(x) = x^{1/12}.

  1. f(x)=112x11/12f'(x) = \frac{1}{12}x^{-11/12}
  2. f(x)=11144x23/12f''(x) = \frac{-11}{144}x^{-23/12}
  3. f(x)=11231728x35/12f'''(x) = \frac{11 \cdot 23}{1728}x^{-35/12}
  4. f(4)(x)=11233520736x47/12f^{(4)}(x) = \frac{-11 \cdot 23 \cdot 35}{20736}x^{-47/12}

Step 2: Evaluate the derivatives at a=1a = 1

At x=1x = 1, f(n)(1)f^{(n)}(1) simplifies since 1n=11^n = 1:

  1. f(1)=11/12=1f(1) = 1^{1/12} = 1
  2. f(1)=112f'(1) = \frac{1}{12}
  3. f(1)=11144f''(1) = \frac{-11}{144}
  4. f(1)=11231728=2531728f'''(1) = \frac{11 \cdot 23}{1728} = \frac{253}{1728}
  5. f(4)(1)=11233520736=885520736f^{(4)}(1) = \frac{-11 \cdot 23 \cdot 35}{20736} = \frac{-8855}{20736}

Step 3: Write the 4th-degree Taylor polynomial T4(x)T_4(x)

The general form of the Taylor polynomial is:

T4(x)=f(1)+f(1)(x1)+f(1)2!(x1)2+f(1)3!(x1)3+f(4)(1)4!(x1)4T_4(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2!}(x-1)^2 + \frac{f'''(1)}{3!}(x-1)^3 + \frac{f^{(4)}(1)}{4!}(x-1)^4

Substituting the values:

T4(x)=1+112(x1)+111442(x1)2+25317286(x1)3+88552073624(x1)4T_4(x) = 1 + \frac{1}{12}(x-1) + \frac{\frac{-11}{144}}{2}(x-1)^2 + \frac{\frac{253}{1728}}{6}(x-1)^3 + \frac{\frac{-8855}{20736}}{24}(x-1)^4

Simplify each term:

  1. f(1)(x1)=112(x1)f'(1)(x-1) = \frac{1}{12}(x-1)
  2. f(1)2(x1)2=11288(x1)2\frac{f''(1)}{2}(x-1)^2 = \frac{-11}{288}(x-1)^2
  3. f(1)6(x1)3=25310368(x1)3\frac{f'''(1)}{6}(x-1)^3 = \frac{253}{10368}(x-1)^3
  4. f(4)(1)24(x1)4=8855497664(x1)4\frac{f^{(4)}(1)}{24}(x-1)^4 = \frac{-8855}{497664}(x-1)^4

Thus:

T4(x)=1+112(x1)11288(x1)2+25310368(x1)38855497664(x1)4T_4(x) = 1 + \frac{1}{12}(x-1) - \frac{11}{288}(x-1)^2 + \frac{253}{10368}(x-1)^3 - \frac{8855}{497664}(x-1)^4


Step 4: Error Bound

The error term R4(x)R_4(x) for a Taylor polynomial is:

R4(x)=f(5)(c)5!(x1)5R_4(x) = \frac{f^{(5)}(c)}{5!}(x-1)^5

Where cc is some number in [1,1.4][1, 1.4], and f(5)(x)f^{(5)}(x) is the 5th derivative of f(x)f(x). Compute f(5)(x)f^{(5)}(x):

f(5)(x)=11233547248832x59/12f^{(5)}(x) = \frac{11 \cdot 23 \cdot 35 \cdot 47}{248832}x^{-59/12}

The maximum of f(5)(x)|f^{(5)}(x)| occurs at x=1.4x = 1.4 since x59/12x^{-59/12} decreases as xx increases. Evaluate at x=1.4x = 1.4:

f(5)(1.4)=112335472488321.459/12f^{(5)}(1.4) = \frac{11 \cdot 23 \cdot 35 \cdot 47}{248832} \cdot 1.4^{-59/12}

Numerically approximating 1.459/121.4^{-59/12} gives:

1.459/120.6761.4^{-59/12} \approx 0.676

Thus:

f(5)(1.4)112335472488320.676=4088452488320.6761.109f^{(5)}(1.4) \approx \frac{11 \cdot 23 \cdot 35 \cdot 47}{248832} \cdot 0.676 = \frac{408845}{248832} \cdot 0.676 \approx 1.109

Now calculate the error:

R4(1.4)f(5)(1.4)120(1.41)5=1.109120(0.4)5R_4(1.4) \leq \frac{|f^{(5)}(1.4)|}{120}(1.4-1)^5 = \frac{1.109}{120}(0.4)^5

R4(1.4)1.1091200.010240.0000948R_4(1.4) \leq \frac{1.109}{120} \cdot 0.01024 \approx 0.0000948

In scientific notation:

R4(1.4)9.48×105R_4(1.4) \leq 9.48 \times 10^{-5}


Final Answer

  1. The 4th-degree Taylor polynomial:

T4(x)=1+112(x1)11288(x1)2+25310368(x1)38855497664(x1)4T_4(x) = 1 + \frac{1}{12}(x-1) - \frac{11}{288}(x-1)^2 + \frac{253}{10368}(x-1)^3 - \frac{8855}{497664}(x-1)^4

  1. The error bound:

f(1.4)T4(1.4)9.48×105|f(1.4) - T_4(1.4)| \leq 9.48 \times 10^{-5}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Taylor Series
Error Bound Estimation
Calculus - Derivatives

Formulas

Taylor polynomial: T_n(x) = f(a) + f'(a)(x-a) + (f''(a)/2!)(x-a)^2 + ... + (f^(n)(a)/n!)(x-a)^n
Error bound: R_n(x) = (f^(n+1)(c)/(n+1)!)(x-a)^(n+1), where c is in [a, x]

Theorems

Taylor's Theorem

Suitable Grade Level

Grades 11-12, College Calculus