We aim to find the 4th-degree Taylor polynomial T4(x) for f(x)=x1/12 centered at a=1, and then calculate the error bound at x=1.4.
Step 1: Compute the derivatives of f(x)
The function is f(x)=x1/12.
- f′(x)=121x−11/12
- f′′(x)=144−11x−23/12
- f′′′(x)=172811⋅23x−35/12
- f(4)(x)=20736−11⋅23⋅35x−47/12
Step 2: Evaluate the derivatives at a=1
At x=1, f(n)(1) simplifies since 1n=1:
- f(1)=11/12=1
- f′(1)=121
- f′′(1)=144−11
- f′′′(1)=172811⋅23=1728253
- f(4)(1)=20736−11⋅23⋅35=20736−8855
Step 3: Write the 4th-degree Taylor polynomial T4(x)
The general form of the Taylor polynomial is:
T4(x)=f(1)+f′(1)(x−1)+2!f′′(1)(x−1)2+3!f′′′(1)(x−1)3+4!f(4)(1)(x−1)4
Substituting the values:
T4(x)=1+121(x−1)+2144−11(x−1)2+61728253(x−1)3+2420736−8855(x−1)4
Simplify each term:
- f′(1)(x−1)=121(x−1)
- 2f′′(1)(x−1)2=288−11(x−1)2
- 6f′′′(1)(x−1)3=10368253(x−1)3
- 24f(4)(1)(x−1)4=497664−8855(x−1)4
Thus:
T4(x)=1+121(x−1)−28811(x−1)2+10368253(x−1)3−4976648855(x−1)4
Step 4: Error Bound
The error term R4(x) for a Taylor polynomial is:
R4(x)=5!f(5)(c)(x−1)5
Where c is some number in [1,1.4], and f(5)(x) is the 5th derivative of f(x). Compute f(5)(x):
f(5)(x)=24883211⋅23⋅35⋅47x−59/12
The maximum of ∣f(5)(x)∣ occurs at x=1.4 since x−59/12 decreases as x increases. Evaluate at x=1.4:
f(5)(1.4)=24883211⋅23⋅35⋅47⋅1.4−59/12
Numerically approximating 1.4−59/12 gives:
1.4−59/12≈0.676
Thus:
f(5)(1.4)≈24883211⋅23⋅35⋅47⋅0.676=248832408845⋅0.676≈1.109
Now calculate the error:
R4(1.4)≤120∣f(5)(1.4)∣(1.4−1)5=1201.109(0.4)5
R4(1.4)≤1201.109⋅0.01024≈0.0000948
In scientific notation:
R4(1.4)≤9.48×10−5
Final Answer
- The 4th-degree Taylor polynomial:
T4(x)=1+121(x−1)−28811(x−1)2+10368253(x−1)3−4976648855(x−1)4
- The error bound:
∣f(1.4)−T4(1.4)∣≤9.48×10−5