Math Problem Statement
Indique si cada una de ellas es una fórmula tautológica, contingente o contradictoria. Justifique su respuesta.
a) (pÚq) → ~ (~pÙ~q) b) (p→q) → ~ (pÙ~q) d) (pÚq) « ~ (pÚq)
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Propositional Logic
Logical Formulas
Tautology
Contradiction
Contingency
Formulas
(p ∨ q) → ¬ (¬p ∧ ¬q)
(p → q) → ¬ (p ∧ ¬q)
(p ∨ q) ↔ ¬ (p ∨ q)
Theorems
Law of Implication
Law of Double Negation
De Morgan's Laws
Suitable Grade Level
Grades 10-12
Related Recommendation
Truth Table Analysis for (p ∨ q) → ¬ (¬p ∧ ¬q) - Tautology, Contingency, or Contradiction?
Determine if (p ∨ q) ∨ (¬p ∨ q) is a Tautology Using a Truth Table
Truth Table Analysis for p → q, ¬(p ∨ q), and ¬q ↔ ¬p
Tautology in Propositional Logic: ~p → (p → q)
Analyzing Logical Expressions: (p ∨ q) → r and ~(q ∧ r) ↔ (p ∧ q)