Math Problem Statement

Viết phương trình tiếp tuyến của đường cong (C): y^(x^(2))-9x , biết tiếp tuyến song song đường thẳng (d): y = 3x+ 1.

Solution

Để viết phương trình tiếp tuyến của đường cong (C):yx29x(C): y^{x^2} - 9x, biết rằng tiếp tuyến song song với đường thẳng (d):y=3x+1(d): y = 3x + 1, ta thực hiện theo các bước sau:

Bước 1: Xác định độ dốc của tiếp tuyến

Đoạn đường thẳng (d):y=3x+1(d): y = 3x + 1 có độ dốc là 33, vì vậy tiếp tuyến của (C)(C) song song với (d)(d) cũng sẽ có độ dốc bằng 33.

Bước 2: Tìm đạo hàm của yx29xy^{x^2} - 9x

Để tìm phương trình tiếp tuyến, ta cần đạo hàm của hàm số yx29xy^{x^2} - 9x, tức là ta cần tìm dydx\frac{dy}{dx}.

Hàm số của ta là: f(x)=yx29xf(x) = y^{x^2} - 9x

Đạo hàm của hàm này theo xx cần áp dụng quy tắc đạo hàm của các hàm số mũ có lũy thừa biến đổi và đạo hàm của đa thức:

ddx(yx2)ddx(9x)\frac{d}{dx} (y^{x^2}) - \frac{d}{dx} (9x)

Sau đó, ta thay giá trị độ dốc bằng 3 vào kết quả để giải tiếp.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Tangents
Slope of a Line

Formulas

Derivative of exponential functions
Derivative of polynomials
Slope of a tangent line

Theorems

Derivative of a composite function
Properties of parallel lines

Suitable Grade Level

Grades 11-12