Math Problem Statement

Étude de la position relative de la courbe de la fonction f et de l'une de ses tangentes. Montrer que l'équation réduite de la tangente T à la courbe C en x = 2 est y = 3x + 3. Étudier la position relative de C et T en étudiant le signe de la différence de leurs fonctions.

Solution

The problem provided seems to be focused on studying the relative position of curves, specifically the function f(x)f(x) and its tangent TT. Let me transcribe and summarize the key tasks from the image for clarity:

Part C: Étude de la position relative de la courbe de la fonction ff et de l'une de ses tangentes

  1. Montrer que l'équation réduite de la tangente TT à la courbe C\mathcal{C} en x=2x = 2 est : y=3x+3y = 3x + 3

  2. Montrer qu'étudier la position relative de C\mathcal{C} et TT revient à étudier le signe de : x33x2+4(x2)2(x+1)\frac{x^3 - 3x^2 + 4}{(x - 2)^2 (x + 1)}

  3. Montrer que, pour tout réel xx, x33x2+4=(x2)2(x+1)x^3 - 3x^2 + 4 = (x - 2)^2 (x + 1).

  4. En déduire alors la position relative de la courbe C\mathcal{C} et de sa tangente TT en x=2x = 2 sur l'intervalle [1.5,5][1.5, 5].

The problem is asking to study the position of the curve C\mathcal{C} defined by the function f(x)=x33x2+4f(x) = x^3 - 3x^2 + 4 and its tangent at x=2x = 2, with the following steps:

  • Show that the tangent equation at x=2x = 2 is y=3x+3y = 3x + 3.
  • Study the sign of the difference between f(x)f(x) and the tangent to understand where the curve is above or below the tangent.
  • Prove that the cubic function can be factored as (x2)2(x+1)(x - 2)^2 (x + 1).
  • Analyze the relative position of the curve and tangent in the interval [1.5,5][1.5, 5].

Would you like me to guide you through these steps in detail or solve one of the specific points?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Tangents
Polynomials

Formulas

Tangent line formula
Polynomial factorization

Theorems

The derivative theorem for tangents
Factor theorem

Suitable Grade Level

High School (Grades 11-12)