Math Problem Statement
Studiare le seguenti funzioni rappresentando nel piano cartesiano le
informazioni ricavate dallo studio del dominio, le eventuali simmetrie,
le intersezioni con gli assi coordinati e il segno (studiare equazioni e
disequazioni sia algebricamente che graficamente (qualora sia possibile)
in modo da poter scegliere di volta in volta il metodo che si ritiene più
opportuno).
y = |x − 1|+|x − 2|−3x/x^5−2x^3 −x^2+2
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Algebra
Piecewise Functions
Absolute Value Functions
Rational Functions
Formulas
y = |x − 1| + |x − 2| − 3x / (x^5 − 2x^3 − x^2 + 2)
Domain: x^5 − 2x^3 − x^2 + 2 ≠ 0
Intersection with y-axis: x = 0, y(0) = 3/2
Intersection with x-axis: |x − 1| + |x − 2| − 3x = 0
Theorems
Study of Modulus Function
Analysis of Rational Functions
Roots of Polynomials
Suitable Grade Level
Undergraduate
Related Recommendation
Study of a Complex Function: Absolute Values and Rational Terms with Polynomial Denominator
Solving Absolute Value and Cubic Functions: f(x) = |(x + 2)^3| - 1
Understanding the Function f(x) = |x + 2| - 5: Domain, Range, and Graph
Graph Analysis of f(x) = |2 − x| / (2 − x): Domain, Range, and Intercepts
10th Grade Function Analysis: Absolute Value Function f(x) = |(x + 2)^3| - 1