Math Problem Statement

solve

Find \( \int \left( -3x^6 - \frac{3}{x} - \frac{4}{x^5} + 5\sqrt{x} \right) dx \).

Solution

To solve the given integral:

(3x63x4x5+5x)dx\int \left( -3x^6 - \frac{3}{x} - \frac{4}{x^5} + 5\sqrt{x} \right) dx

Step 1: Break the integral into individual terms

(3x63x4x5+5x)dx=3x6dx3xdx4x5dx+5xdx\int \left( -3x^6 - \frac{3}{x} - \frac{4}{x^5} + 5\sqrt{x} \right) dx = \int -3x^6 \, dx - \int \frac{3}{x} \, dx - \int \frac{4}{x^5} \, dx + \int 5\sqrt{x} \, dx

Step 2: Solve each term separately

  1. For 3x6-3x^6: 3x6dx=3x77\int -3x^6 \, dx = -\frac{3x^7}{7}

  2. For 3x-\frac{3}{x} (note that 1x=x1\frac{1}{x} = x^{-1}): 3xdx=3lnx\int -\frac{3}{x} \, dx = -3 \ln|x|

  3. For 4x5-\frac{4}{x^5} (rewrite as 4x5-4x^{-5}): 4x5dx=4x44=x4=1x4\int -\frac{4}{x^5} \, dx = -\frac{4x^{-4}}{-4} = x^{-4} = \frac{1}{x^4}

  4. For 5x5\sqrt{x} (rewrite as 5x1/25x^{1/2}): 5xdx=5x1/2dx=5x3/23/2=10x3/23\int 5\sqrt{x} \, dx = \int 5x^{1/2} \, dx = \frac{5x^{3/2}}{3/2} = \frac{10x^{3/2}}{3}

Step 3: Combine all results

Now add all the terms together: (3x63x4x5+5x)dx=3x773lnx+1x4+10x3/23+C\int \left( -3x^6 - \frac{3}{x} - \frac{4}{x^5} + 5\sqrt{x} \right) dx = -\frac{3x^7}{7} - 3 \ln|x| + \frac{1}{x^4} + \frac{10x^{3/2}}{3} + C

Final Answer:

3x773lnx+1x4+10x3/23+C\boxed{-\frac{3x^7}{7} - 3 \ln|x| + \frac{1}{x^4} + \frac{10x^{3/2}}{3} + C}

Let me know if you want further details or clarification!


Related Questions:

  1. What is the geometric interpretation of an indefinite integral?
  2. How does the integration of fractional exponents like x1/2x^{1/2} work?
  3. What happens if the integral contains a trigonometric function instead of a polynomial?
  4. How do you handle definite integrals for similar expressions?
  5. What techniques are useful for integrating rational functions with complex denominators?

Tip: Always rewrite terms like x\sqrt{x} or 1xn\frac{1}{x^n} into powers of xx for easier integration!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Polynomial Functions
Logarithmic Functions

Formulas

\( \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \) for \( n \neq -1 \)
\( \int \frac{1}{x} \, dx = \ln|x| + C \)

Theorems

Power Rule of Integration
Logarithmic Integration Theorem

Suitable Grade Level

Grades 11-12 or introductory college-level calculus