Math Problem Statement

Evaluate the integral \( \int \frac{dx}{3 - \sqrt{x}} \).

Solution

The given mathematical expression in the image is:

dx3x\int \frac{dx}{3 - \sqrt{x}}

Solution:

To solve this integral, we will use substitution techniques.


Step 1: Substitution

Let: u=3xu = 3 - \sqrt{x} Then: x=3uandx=(3u)2\sqrt{x} = 3 - u \quad \text{and} \quad x = (3 - u)^2 Differentiating x=(3u)2x = (3 - u)^2: dx=2(3u)(1)du=2(3u)dudx = 2(3 - u)(-1) \, du = -2(3 - u) \, du


Step 2: Rewrite the Integral

Substitute u=3xu = 3 - \sqrt{x} and dx=2(3u)dudx = -2(3 - u) \, du into the integral: dx3x=2(3u)duu\int \frac{dx}{3 - \sqrt{x}} = \int \frac{-2(3 - u) \, du}{u}

Simplify: =23uudu=2(3u1)du= -2 \int \frac{3 - u}{u} \, du = -2 \int \left( \frac{3}{u} - 1 \right) \, du


Step 3: Solve the Integral

Split the integral: 2(3u1)du=2(31udu1du)-2 \int \left( \frac{3}{u} - 1 \right) \, du = -2 \left( 3 \int \frac{1}{u} \, du - \int 1 \, du \right)

Solve each term: 1udu=lnu,1du=u\int \frac{1}{u} \, du = \ln|u|, \quad \int 1 \, du = u

Thus: 2(3lnuu)=6lnu+2u-2 \left( 3 \ln|u| - u \right) = -6 \ln|u| + 2u


Step 4: Back-Substitute uu

Recall u=3xu = 3 - \sqrt{x}: 6lnu+2u=6ln3x+2(3x)-6 \ln|u| + 2u = -6 \ln|3 - \sqrt{x}| + 2(3 - \sqrt{x})

Simplify: 6ln3x+62x-6 \ln|3 - \sqrt{x}| + 6 - 2\sqrt{x}


Final Answer:

dx3x=6ln3x+62x+C\int \frac{dx}{3 - \sqrt{x}} = -6 \ln|3 - \sqrt{x}| + 6 - 2\sqrt{x} + C


Would you like more clarification or details on any step?


Related Questions:

  1. What are the key substitution techniques used in integrals involving square roots?
  2. How do you handle logarithmic terms in definite integrals?
  3. What other functions require substitutions like u=axu = a - \sqrt{x}?
  4. How can this solution be checked by differentiation?
  5. What is the significance of absolute values in logarithmic terms?

Tip:

For integrals involving terms like axa - \sqrt{x}, substitution with u=axu = a - \sqrt{x} often simplifies the problem significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Substitution Method
Logarithmic Functions

Formulas

Integration by substitution: \( \int f(g(x))g'(x)dx = \int f(u)du \)
Logarithmic integration: \( \int \frac{1}{u}du = \ln|u| + C \)

Theorems

Logarithmic Differentiation
Substitution in Integration

Suitable Grade Level

Undergraduate Mathematics or Advanced High School Calculus