Math Problem Statement

Find the derivative of y with respect to x, t, or θ, as appropriate. Problems include logarithmic, product rule, quotient rule, and chain rule applications.

Solution

Let's solve each problem step-by-step.


1. Find the derivative of y=ln(x3)y = \ln(x - 3):

The derivative of ln(u)\ln(u) is 1ududx\frac{1}{u} \cdot \frac{du}{dx}.

Here:

  • u=x3u = x - 3
  • dudx=1\frac{du}{dx} = 1

Thus: dydx=1x31=1x3.\frac{dy}{dx} = \frac{1}{x - 3} \cdot 1 = \frac{1}{x - 3}.

Answer: D) 1x3\frac{1}{x - 3}.


2. Find the derivative of y=lnxx6y = \frac{\ln x}{x^6}:

Use the quotient rule: ddx(uv)=uvuvv2.\frac{d}{dx} \left( \frac{u}{v} \right) = \frac{u'v - uv'}{v^2}. Here:

  • u=lnxu = \ln x, so u=1xu' = \frac{1}{x},
  • v=x6v = x^6, so v=6x5v' = 6x^5.

Now compute: dydx=(1xx6)(lnx6x5)(x6)2.\frac{dy}{dx} = \frac{\left( \frac{1}{x} \cdot x^6 \right) - \left( \ln x \cdot 6x^5 \right)}{(x^6)^2}.

Simplify: dydx=x56x5lnxx12=16lnxx7.\frac{dy}{dx} = \frac{x^5 - 6x^5 \ln x}{x^{12}} = \frac{1 - 6 \ln x}{x^7}.

Answer: C) 16lnxx7\frac{1 - 6 \ln x}{x^7}.


3. Find the derivative of y=(x22x+4)exy = (x^2 - 2x + 4)e^x:

Use the product rule: ddx(uv)=uv+uv,\frac{d}{dx}(uv) = u'v + uv', where u=(x22x+4)u = (x^2 - 2x + 4) and v=exv = e^x.

  • u=x22x+4u = x^2 - 2x + 4, so u=2x2u' = 2x - 2,
  • v=exv = e^x, so v=exv' = e^x.

Now compute: dydx=(2x2)ex+(x22x+4)ex.\frac{dy}{dx} = (2x - 2)e^x + (x^2 - 2x + 4)e^x.

Factor out exe^x: dydx=((2x2)+(x22x+4))ex.\frac{dy}{dx} = \left( (2x - 2) + (x^2 - 2x + 4) \right)e^x.

Simplify the terms inside the parentheses: (2x2)+(x22x+4)=x2+4.(2x - 2) + (x^2 - 2x + 4) = x^2 + 4.

Thus: dydx=(x2+2)ex.\frac{dy}{dx} = (x^2 + 2)e^x.

Answer: C) (x2+2)ex(x^2 + 2)e^x.


4. Find the derivative of y=3sin1(5x4)y = 3 \sin^{-1}(5x^4):

Use the chain rule for sin1(u)\sin^{-1}(u): ddx(sin1(u))=11u2dudx.\frac{d}{dx}(\sin^{-1}(u)) = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx}.

Here:

  • u=5x4u = 5x^4, so dudx=20x3\frac{du}{dx} = 20x^3.

Now compute: dydx=311(5x4)220x3.\frac{dy}{dx} = 3 \cdot \frac{1}{\sqrt{1 - (5x^4)^2}} \cdot 20x^3.

Simplify: dydx=60x3125x8.\frac{dy}{dx} = \frac{60x^3}{\sqrt{1 - 25x^8}}.

Answer: B) 60x3125x8\frac{60x^3}{\sqrt{1 - 25x^8}}.


Final Answers:

  1. D) 1x3\frac{1}{x - 3}
  2. C) 16lnxx7\frac{1 - 6 \ln x}{x^7}
  3. C) (x2+2)ex(x^2 + 2)e^x
  4. B) 60x3125x8\frac{60x^3}{\sqrt{1 - 25x^8}}

Would you like me to explain any solution in more detail? Let me know if you need help with another step.

Here are 5 follow-up questions to test your understanding:

  1. What is the derivative of y=ln(x+5)y = \ln(x + 5)?
  2. How do you differentiate y=x3exy = x^3e^x using the product rule?
  3. Find the derivative of y=1x4y = \frac{1}{x^4}.
  4. What is the derivative of y=arcsin(2x)y = \arcsin(2x)?
  5. Can you apply the quotient rule to differentiate y=x2x3+1y = \frac{x^2}{x^3 + 1}?

Tip: Always look for opportunities to simplify expressions before applying derivative rules!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Logarithmic Differentiation
Product Rule
Quotient Rule
Chain Rule

Formulas

d/dx [ln(u)] = 1/u * du/dx
Product Rule: d/dx [u * v] = u'v + uv'
Quotient Rule: d/dx [u/v] = (u'v - uv') / v^2
Chain Rule: d/dx [f(g(x))] = f'(g(x)) * g'(x)

Theorems

Rules of differentiation
Properties of logarithmic and inverse trigonometric functions

Suitable Grade Level

Grade 11-12 / Early College Calculus