Math Problem Statement

Find the first derivatives of the following functions: (a) y = ln(x^2 - x) (b) p(a) = log_3(a^2 - 1) (c) h(z) = z^2 - ln^4(1 - z^2) (d) y = (6x^2 - 3x + 1)^(3/2) / sqrt(x^2 - 3x)

Solution

Let’s find the first derivatives of each of these functions one by one.

Problem a)

Function: y=ln(x2x)y = \ln(x^2 - x)

Solution: To differentiate this, we use the chain rule. The derivative of ln(u)\ln(u) is 1ududx\frac{1}{u} \cdot \frac{du}{dx}.

  1. Let u=x2xu = x^2 - x.
  2. Then dudx=2x1\frac{du}{dx} = 2x - 1.
  3. So, y=1x2x(2x1)=2x1x2xy' = \frac{1}{x^2 - x} \cdot (2x - 1) = \frac{2x - 1}{x^2 - x}.

Thus, the first derivative is: y=2x1x2xy' = \frac{2x - 1}{x^2 - x}


Problem b)

Function: p(a)=log3(a21)p(a) = \log_3(a^2 - 1)

Solution: For this problem, we use the change of base formula along with the chain rule. The derivative of logb(u)\log_b(u) is 1uln(b)duda\frac{1}{u \ln(b)} \cdot \frac{du}{da}.

  1. Let u=a21u = a^2 - 1.
  2. Then duda=2a\frac{du}{da} = 2a.
  3. So, p(a)=1(a21)ln(3)2a=2a(a21)ln(3)p'(a) = \frac{1}{(a^2 - 1) \ln(3)} \cdot 2a = \frac{2a}{(a^2 - 1) \ln(3)}.

Thus, the first derivative is: p(a)=2a(a21)ln(3)p'(a) = \frac{2a}{(a^2 - 1) \ln(3)}


Problem c)

Function: h(z)=z2ln4(1z2)h(z) = z^2 - \ln^4(1 - z^2)

Solution: This requires the derivative of z2z^2 and the derivative of ln4(1z2)\ln^4(1 - z^2), using the chain rule.

  1. The derivative of z2z^2 is 2z2z.
  2. For the ln4(1z2)\ln^4(1 - z^2) term, let u=ln(1z2)u = \ln(1 - z^2), so ln4(1z2)=u4\ln^4(1 - z^2) = u^4.
    • Differentiate u4u^4: 4u3dudz4u^3 \cdot \frac{du}{dz}.
    • dudz=2z1z2\frac{du}{dz} = \frac{-2z}{1 - z^2}, because u=ln(1z2)u = \ln(1 - z^2).

Therefore, h(z)=2z4(ln(1z2))32z1z2h'(z) = 2z - 4 \left(\ln(1 - z^2)\right)^3 \cdot \frac{-2z}{1 - z^2} =2z+8z(ln(1z2))31z2= 2z + \frac{8z \left(\ln(1 - z^2)\right)^3}{1 - z^2}


Problem d)

Function: y=(6x23x+1)32x23xy = \frac{(6x^2 - 3x + 1)^{\frac{3}{2}}}{\sqrt{x^2 - 3x}}

Solution: To differentiate this, we can use the quotient rule and chain rule.

  1. Let u=(6x23x+1)32u = (6x^2 - 3x + 1)^{\frac{3}{2}} and v=(x23x)12v = (x^2 - 3x)^{\frac{1}{2}}.
  2. Differentiate uu and vv:
    • u=32(6x23x+1)12(12x3)=3(12x3)(6x23x+1)122u' = \frac{3}{2} (6x^2 - 3x + 1)^{\frac{1}{2}} \cdot (12x - 3) = \frac{3(12x - 3) (6x^2 - 3x + 1)^{\frac{1}{2}}}{2}.
    • v=12(x23x)12(2x3)=2x32x23xv' = \frac{1}{2} (x^2 - 3x)^{-\frac{1}{2}} \cdot (2x - 3) = \frac{2x - 3}{2 \sqrt{x^2 - 3x}}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Logarithmic differentiation
Quotient rule
Chain rule

Formulas

d/dx[ln(u)] = 1/u * du/dx
d/dx[log_b(u)] = 1/(u ln(b)) * du/dx
Quotient rule: (f/g)' = (f'g - fg') / g^2
Chain rule: d/dx[f(g(x))] = f'(g(x)) * g'(x)

Theorems

Chain rule
Quotient rule

Suitable Grade Level

Grades 11-12 or introductory college calculus