Math Problem Statement

68°10bcABC[Graphs generated by this script: setBorder(10);initPicture(-1.2378621213676,1.2640092845109,-1.2509357029392,1.2509357029392);path([[0.839753538084,-0.34551009299592],[0.83626358841375,-0.24557101029401],[0.93620267111566,-0.24208106062376]]);strokewidth=2;line([-0.9135454576426,-0.4067366430758],[0.93969262078591,-0.34202014332567]);line([0.93969262078591,-0.34202014332567],[0.9135454576426,0.4067366430758]);line([0.9135454576426,0.4067366430758],[-0.9135454576426,-0.4067366430758]);strokewidth=1;text([0.75550988775434,0.15382686376694],'68°');text([-0.67426229299486,-0.1328396295113],'');text([0.75756047920311,-0.17217917362915],'');text([0.01954128919236,-0.55958930678713],'10');text([1.1118299528006,0.038825957495772],'b');text([-0.075377983484026,0.16930172284787],'c');dot([-0.9135454576426,-0.4067366430758]);dot([0.93969262078591,-0.34202014332567]);dot([0.9135454576426,0.4067366430758]);text([0.99538433755675,0.53770622842046],'A');text([-1.064023766521,-0.44147729805019],'B');text([1.0526403315059,-0.4473455875168],'C');;]

Solve ΔABCΔABC . Give the measures to the nearest tenth where necessary.

 ∠A=68∠A=68 degrees

 ∠B=∠B=  degrees

 ∠C=90∠C=90 degrees

  a=10a=10

  b=b= 

  c=c= 

Solution

To solve triangle ΔABC\Delta ABC with the given information:

  1. Angles:

    • A=68\angle A = 68^\circ
    • C=90\angle C = 90^\circ (since it's a right triangle)
    • Using the fact that the sum of angles in a triangle is 180180^\circ, we find B\angle B: B=180AC=1806890=22\angle B = 180^\circ - \angle A - \angle C = 180^\circ - 68^\circ - 90^\circ = 22^\circ
  2. Sides:

    • Given a=10a = 10 (side opposite A\angle A), we need to find sides bb (opposite B\angle B) and cc (the hypotenuse opposite C\angle C).
  3. Finding bb (using the sine function): asinA=bsinB    b=asinBsinA\frac{a}{\sin A} = \frac{b}{\sin B} \implies b = a \cdot \frac{\sin B}{\sin A} b=10sin(22)sin(68)b = 10 \cdot \frac{\sin(22^\circ)}{\sin(68^\circ)} sin(22)0.3746,sin(68)0.9272\sin(22^\circ) \approx 0.3746, \quad \sin(68^\circ) \approx 0.9272 b100.37460.92724.0b \approx 10 \cdot \frac{0.3746}{0.9272} \approx 4.0

  4. Finding cc (using the cosine function): c=asinA=10sin(68)100.927210.8c = \frac{a}{\sin A} = \frac{10}{\sin(68^\circ)} \approx \frac{10}{0.9272} \approx 10.8

Summary of the Results:

  • A=68\angle A = 68^\circ
  • B=22\angle B = 22^\circ
  • C=90\angle C = 90^\circ
  • a=10a = 10
  • b4.0b \approx 4.0
  • c10.8c \approx 10.8

Would you like to know more details or have any questions about these calculations? Here are some related questions for further exploration:

  1. How do the sine and cosine laws apply in different types of triangles?
  2. What is the significance of the angles in triangle properties?
  3. How can you calculate the area of triangle ΔABC\Delta ABC using these sides?
  4. What would happen to the side lengths if aa were increased?
  5. Can you explain the relationship between the angles and the sides in a right triangle?

Tip: Always use a scientific calculator or a trigonometric table for precise values of sine and cosine when solving triangle problems.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Right Triangles
Triangle Properties

Formulas

Sum of angles in a triangle: ∠B = 180° - ∠A - ∠C
Sine rule: a/sin(A) = b/sin(B)
Cosine rule: c = a/sin(A)

Theorems

Triangle Sum Theorem
Sine Rule

Suitable Grade Level

Grades 9-12