Math Problem Statement
a+f+e = 0 -5a+e = -7 -4f-e = 4 Find the values of a, f, e
Solution
We have the system of equations:
Step 1: Express in Terms of
From Equation (2):
Step 2: Express in Terms of
From Equation (3):
Step 3: Equating the Expressions for
Since both expressions represent , we set them equal to each other:
Rearrange:
Step 4: Solve for and
Using Equation (1):
Substituting :
Now, we solve the system:
Using the first equation, solve for :
Substituting into the second equation:
Step 5: Find and
Final Answer:
Would you like a detailed verification or explanation?
Related Questions:
- How can we verify the solution using substitution?
- What happens if we change one of the equations slightly?
- Can this system be solved using matrices?
- How does elimination compare to substitution in solving this?
- What are real-world applications of solving such systems?
Tip: Always double-check your solutions by substituting them back into the original equations!
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Systems of Equations
Algebra
Substitution Method
Linear Equations
Formulas
a + f + e = 0
-5a + e = -7
-4f - e = 4
Theorems
Substitution method for solving systems of linear equations
Suitable Grade Level
Grades 9-11
Related Recommendation
Solving Simultaneous Equations: a + e = 2a + f and others
Algebraic Equation Solving with Substitution for Variables a, b, and e
Solving a System of Equations with Substitution: Find the Value of a
Solving a System of Linear Equations to Find a + b + c + d + e
Solve a System of 5 Linear Equations with Variables a, c, and d