Math Problem Statement

if a , b, c are real nummbers such that a-7b+8c=4 and 8a+4b-c=7 , then find the value of a2+b2+C2

Solution

We are given the system of equations:

a7b+8c=4(1)a - 7b + 8c = 4 \quad \text{(1)} 8a+4bc=7(2)8a + 4b - c = 7 \quad \text{(2)}

We need to find the value of a2+b2+c2a^2 + b^2 + c^2.

Step 1: Solve the system of equations

First, let's solve for aa, bb, and cc.

Equation (1): a7b+8c=4(1)a - 7b + 8c = 4 \quad \text{(1)}

Equation (2): 8a+4bc=7(2)8a + 4b - c = 7 \quad \text{(2)}

We can solve this system using the substitution or elimination method.

Substitution/Elimination Method:

From equation (2), solve for cc:

c=8a+4b7c = 8a + 4b - 7

Now substitute this expression for cc into equation (1):

a7b+8(8a+4b7)=4a - 7b + 8(8a + 4b - 7) = 4 Simplify the terms:

a7b+64a+32b56=4a - 7b + 64a + 32b - 56 = 4 65a+25b56=465a + 25b - 56 = 4 65a+25b=6065a + 25b = 60

Now, divide the entire equation by 5:

13a+5b=12(3)13a + 5b = 12 \quad \text{(3)}

Step 2: Solve for bb

Solve equation (3) for bb:

5b=1213a5b = 12 - 13a b=1213a5b = \frac{12 - 13a}{5}

Step 3: Substitute into the expression for cc

Now substitute b=1213a5b = \frac{12 - 13a}{5} into the expression for cc:

c=8a+4(1213a5)7c = 8a + 4\left(\frac{12 - 13a}{5}\right) - 7 Simplify:

c=8a+4852a57c = 8a + \frac{48 - 52a}{5} - 7 c=8a+4852a355c = 8a + \frac{48 - 52a - 35}{5} c=8a+1352a5c = 8a + \frac{13 - 52a}{5} c=40a+1352a5c = \frac{40a + 13 - 52a}{5} c=12a+135c = \frac{-12a + 13}{5}

Step 4: Calculate a2+b2+c2a^2 + b^2 + c^2

Now we have expressions for bb and cc in terms of aa:

b=1213a5,c=12a+135b = \frac{12 - 13a}{5}, \quad c = \frac{-12a + 13}{5}

To find a2+b2+c2a^2 + b^2 + c^2, we'll use these expressions:

a2+b2+c2=a2+(1213a5)2+(12a+135)2a^2 + b^2 + c^2 = a^2 + \left( \frac{12 - 13a}{5} \right)^2 + \left( \frac{-12a + 13}{5} \right)^2

This expression can be simplified, but since it's a bit involved, let's check if there’s a more efficient approach to finalize the value of a2+b2+c2a^2 + b^2 + c^2.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Systems of Linear Equations
Substitution Method
Expression Simplification

Formulas

a - 7b + 8c = 4
8a + 4b - c = 7
a^2 + b^2 + c^2

Theorems

Substitution in Systems of Equations

Suitable Grade Level

Grades 9-11