Math Problem Statement

Calculate the results for the given square root expressions: A. sqrt(28) + 3*sqrt(63) - 2*sqrt(12), B. sqrt(147) - 2*sqrt(48) + 3*sqrt(12), C. 3*sqrt(162) - sqrt(98) - 2*sqrt(18).

Solution

Let's break down the questions in the image and solve them step by step.


A. 28+363212\sqrt{28} + 3\sqrt{63} - 2\sqrt{12}

  1. Simplify each square root:

    • 28=4×7=27\sqrt{28} = \sqrt{4 \times 7} = 2\sqrt{7}
    • 63=9×7=37\sqrt{63} = \sqrt{9 \times 7} = 3\sqrt{7}
    • 12=4×3=23\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}
  2. Substitute the simplified terms: 27+3(37)2(23)2\sqrt{7} + 3(3\sqrt{7}) - 2(2\sqrt{3}) =27+9743= 2\sqrt{7} + 9\sqrt{7} - 4\sqrt{3}

  3. Combine like terms: (27+97)43(2\sqrt{7} + 9\sqrt{7}) - 4\sqrt{3} =11743= 11\sqrt{7} - 4\sqrt{3}

B. 147248+312\sqrt{147} - 2\sqrt{48} + 3\sqrt{12}

  1. Simplify each square root:

    • 147=49×3=73\sqrt{147} = \sqrt{49 \times 3} = 7\sqrt{3}
    • 48=16×3=43\sqrt{48} = \sqrt{16 \times 3} = 4\sqrt{3}
    • 12=4×3=23\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}
  2. Substitute the simplified terms: 732(43)+3(23)7\sqrt{3} - 2(4\sqrt{3}) + 3(2\sqrt{3}) =7383+63= 7\sqrt{3} - 8\sqrt{3} + 6\sqrt{3}

  3. Combine like terms: (7383+63)=53(7\sqrt{3} - 8\sqrt{3} + 6\sqrt{3}) = 5\sqrt{3}

C. 3162982183\sqrt{162} - \sqrt{98} - 2\sqrt{18}

  1. Simplify each square root:

    • 162=81×2=92\sqrt{162} = \sqrt{81 \times 2} = 9\sqrt{2}
    • 98=49×2=72\sqrt{98} = \sqrt{49 \times 2} = 7\sqrt{2}
    • 18=9×2=32\sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2}
  2. Substitute the simplified terms: 3(92)722(32)3(9\sqrt{2}) - 7\sqrt{2} - 2(3\sqrt{2}) =2727262= 27\sqrt{2} - 7\sqrt{2} - 6\sqrt{2}

  3. Combine like terms: (2727262)=142(27\sqrt{2} - 7\sqrt{2} - 6\sqrt{2}) = 14\sqrt{2}


Final Answers:

  • A: 1174311\sqrt{7} - 4\sqrt{3}
  • B: 535\sqrt{3}
  • C: 14214\sqrt{2}

Would you like more detailed explanations or have any questions?

Here are 5 related questions to practice:

  1. Simplify 72+1838\sqrt{72} + \sqrt{18} - 3\sqrt{8}.
  2. Solve 475300+274\sqrt{75} - \sqrt{300} + \sqrt{27}.
  3. Simplify 25024+1082\sqrt{50} - \sqrt{24} + \sqrt{108}.
  4. Calculate 98+23218\sqrt{98} + 2\sqrt{32} - \sqrt{18}.
  5. Simplify 80320+45\sqrt{80} - 3\sqrt{20} + \sqrt{45}.

Tip: Always look for common factors under the square root to simplify complex radicals efficiently.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplification of square roots
Combining like terms

Formulas

sqrt(ab) = sqrt(a)*sqrt(b)

Theorems

Properties of square roots

Suitable Grade Level

High School