Math Problem Statement

sin(− 5𝜋/12)

Solution

To solve sin(5π12)\sin \left( - \frac{5\pi}{12} \right), we can use the identity for the sine of a negative angle:

sin(θ)=sin(θ)\sin(-\theta) = -\sin(\theta)

This means:

sin(5π12)=sin(5π12)\sin \left( - \frac{5\pi}{12} \right) = - \sin \left( \frac{5\pi}{12} \right)

Next, we can break 5π12\frac{5\pi}{12} into known angles that we can work with. Notice that:

5π12=π4+π6\frac{5\pi}{12} = \frac{\pi}{4} + \frac{\pi}{6}

We will now use the angle addition formula for sine:

sin(a+b)=sin(a)cos(b)+cos(a)sin(b)\sin(a + b) = \sin(a) \cos(b) + \cos(a) \sin(b)

Substituting a=π4a = \frac{\pi}{4} and b=π6b = \frac{\pi}{6}, we get:

sin(5π12)=sin(π4+π6)=sin(π4)cos(π6)+cos(π4)sin(π6)\sin \left( \frac{5\pi}{12} \right) = \sin \left( \frac{\pi}{4} + \frac{\pi}{6} \right) = \sin \left( \frac{\pi}{4} \right) \cos \left( \frac{\pi}{6} \right) + \cos \left( \frac{\pi}{4} \right) \sin \left( \frac{\pi}{6} \right)

Using known values:

sin(π4)=cos(π4)=22\sin \left( \frac{\pi}{4} \right) = \cos \left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} sin(π6)=12,cos(π6)=32\sin \left( \frac{\pi}{6} \right) = \frac{1}{2}, \quad \cos \left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2}

Substitute these into the formula:

sin(5π12)=(22×32)+(22×12)\sin \left( \frac{5\pi}{12} \right) = \left( \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} \right) + \left( \frac{\sqrt{2}}{2} \times \frac{1}{2} \right)

Simplify each term:

sin(5π12)=64+24\sin \left( \frac{5\pi}{12} \right) = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}

So:

sin(5π12)=6+24\sin \left( \frac{5\pi}{12} \right) = \frac{\sqrt{6} + \sqrt{2}}{4}

Finally, remembering the negative sign:

sin(5π12)=6+24\sin \left( -\frac{5\pi}{12} \right) = - \frac{\sqrt{6} + \sqrt{2}}{4}

Final Answer:

sin(5π12)=6+24\sin \left( - \frac{5\pi}{12} \right) = - \frac{\sqrt{6} + \sqrt{2}}{4}

Would you like more details on the solution or have any questions?

Here are some related questions you might find interesting:

  1. How do you derive the angle addition formula for sine?
  2. What other trigonometric identities can simplify expressions with negative angles?
  3. How do you evaluate sine and cosine for common angles like π6\frac{\pi}{6}, π4\frac{\pi}{4}, and π3\frac{\pi}{3}?
  4. What is the exact value of sin(π12)\sin \left( \frac{\pi}{12} \right)?
  5. How can you use trigonometric identities to simplify sums of angles in radians?

Tip: Remember that recognizing common angle relationships is key to simplifying complex trigonometric expressions quickly!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Sine Function
Angle Addition Formula

Formulas

sin(-θ) = -sin(θ)
sin(a + b) = sin(a)cos(b) + cos(a)sin(b)

Theorems

Sine of negative angles identity
Angle addition formula for sine

Suitable Grade Level

Grades 9-12