Math Problem Statement

From the given triangle, solve for x and use the values to calculate E = tan(θ) + √5 * sec(θ).

Solution

Let's analyze and solve the problem step by step:

Step 1: Solve for xx

The triangle ABC\triangle ABC is a right triangle. By the Pythagorean theorem:

AC2=AB2+BC2AC^2 = AB^2 + BC^2

From the diagram:

  • AB=4AB = 4
  • BC=x+5BC = x + 5
  • AC=(x1)+(x+5)=2x+4AC = (x - 1) + (x + 5) = 2x + 4

Substituting these into the Pythagorean theorem:

(2x+4)2=42+(x+5)2(2x + 4)^2 = 4^2 + (x + 5)^2

Expanding both sides:

(2x+4)2=4x2+16x+16(2x + 4)^2 = 4x^2 + 16x + 16 42=16,(x+5)2=x2+10x+254^2 = 16,\quad (x + 5)^2 = x^2 + 10x + 25

The equation becomes:

4x2+16x+16=16+x2+10x+254x^2 + 16x + 16 = 16 + x^2 + 10x + 25

Simplify:

4x2+16x+16=x2+10x+414x^2 + 16x + 16 = x^2 + 10x + 41

Combine like terms:

4x2x2+16x10x+1641=04x^2 - x^2 + 16x - 10x + 16 - 41 = 0

3x2+6x25=03x^2 + 6x - 25 = 0

Step 2: Solve the quadratic equation

Using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Here:

  • a=3a = 3
  • b=6b = 6
  • c=25c = -25

Substitute these values:

x=6±624(3)(25)2(3)x = \frac{-6 \pm \sqrt{6^2 - 4(3)(-25)}}{2(3)}

x=6±36+3006x = \frac{-6 \pm \sqrt{36 + 300}}{6}

x=6±3366x = \frac{-6 \pm \sqrt{336}}{6}

Simplify:

336=421\sqrt{336} = 4\sqrt{21}

Thus:

x=6±4216x = \frac{-6 \pm 4\sqrt{21}}{6}

Simplify further:

x=3±2213x = \frac{-3 \pm 2\sqrt{21}}{3}

Choose the positive value for xx (since it represents a length):

x=3+2213x = \frac{-3 + 2\sqrt{21}}{3}


Step 3: Calculate EE

The expression for EE is:

E=tanθ+5secθE = \tan \theta + \sqrt{5} \cdot \sec \theta

From the triangle:

  • tanθ=BCAB=x+54\tan \theta = \frac{BC}{AB} = \frac{x + 5}{4}
  • secθ=ACAB=2x+44\sec \theta = \frac{AC}{AB} = \frac{2x + 4}{4}

Substituting these:

E=x+54+52x+44E = \frac{x + 5}{4} + \sqrt{5} \cdot \frac{2x + 4}{4}

Combine terms:

E=x+5+5(2x+4)4E = \frac{x + 5 + \sqrt{5}(2x + 4)}{4}

Substitute x=3+2213x = \frac{-3 + 2\sqrt{21}}{3} into this expression to compute EE.

Would you like me to evaluate this final step numerically?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Algebra
Geometry

Formulas

Pythagorean Theorem: a^2 + b^2 = c^2
Quadratic formula: x = (-b ± √(b^2 - 4ac)) / 2a
Trigonometric ratios: tan(θ) = opposite/adjacent, sec(θ) = hypotenuse/adjacent

Theorems

Pythagorean Theorem

Suitable Grade Level

Grades 10-12