Math Problem Statement

Tentukan matriks G jika: (a) (4 1 2) (-1 3 0) + 2G = (-2 1 4) (9 1 6), (b) 3G - 2(1 1 0) (-2 2 0) = (1 6 5) (-2 -1 0)

Solution

The problem asks to find matrix GG based on two given conditions. Let's analyze and solve the two parts one by one.


Part (a):

The equation given is:

(412130)+2G=(214916)\begin{pmatrix} 4 & 1 & 2 \\ -1 & 3 & 0 \end{pmatrix} + 2G = \begin{pmatrix} -2 & 1 & 4 \\ 9 & 1 & 6 \end{pmatrix}

Steps:

  1. Isolate GG: 2G=(214916)(412130)2G = \begin{pmatrix} -2 & 1 & 4 \\ 9 & 1 & 6 \end{pmatrix} - \begin{pmatrix} 4 & 1 & 2 \\ -1 & 3 & 0 \end{pmatrix}

    Calculate the matrix subtraction: (214916)(412130)=(6021026)\begin{pmatrix} -2 & 1 & 4 \\ 9 & 1 & 6 \end{pmatrix} - \begin{pmatrix} 4 & 1 & 2 \\ -1 & 3 & 0 \end{pmatrix} = \begin{pmatrix} -6 & 0 & 2 \\ 10 & -2 & 6 \end{pmatrix}

  2. Divide by 2 to find GG: G=12(6021026)=(301513)G = \frac{1}{2} \begin{pmatrix} -6 & 0 & 2 \\ 10 & -2 & 6 \end{pmatrix} = \begin{pmatrix} -3 & 0 & 1 \\ 5 & -1 & 3 \end{pmatrix}

Thus, the solution for part (a) is: G=(301513)G = \begin{pmatrix} -3 & 0 & 1 \\ 5 & -1 & 3 \end{pmatrix}


Part (b):

The equation given is:

3G2(110220)=(165210)3G - 2\begin{pmatrix} 1 & 1 & 0 \\ -2 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 6 & 5 \\ -2 & -1 & 0 \end{pmatrix}

Steps:

  1. Expand the equation: 3G2(110220)=(165210)3G - 2\begin{pmatrix} 1 & 1 & 0 \\ -2 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 6 & 5 \\ -2 & -1 & 0 \end{pmatrix}

    Calculate the multiplication: 2(110220)=(220440)2\begin{pmatrix} 1 & 1 & 0 \\ -2 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 0 \\ -4 & 4 & 0 \end{pmatrix}

    Thus, the equation becomes: 3G(220440)=(165210)3G - \begin{pmatrix} 2 & 2 & 0 \\ -4 & 4 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 6 & 5 \\ -2 & -1 & 0 \end{pmatrix}

  2. Isolate 3G3G: 3G=(165210)+(220440)3G = \begin{pmatrix} 1 & 6 & 5 \\ -2 & -1 & 0 \end{pmatrix} + \begin{pmatrix} 2 & 2 & 0 \\ -4 & 4 & 0 \end{pmatrix}

    Add the matrices: 3G=(385630)3G = \begin{pmatrix} 3 & 8 & 5 \\ -6 & 3 & 0 \end{pmatrix}

  3. Divide by 3 to find GG: G=13(385630)=(18353210)G = \frac{1}{3} \begin{pmatrix} 3 & 8 & 5 \\ -6 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 1 & \frac{8}{3} & \frac{5}{3} \\ -2 & 1 & 0 \end{pmatrix}

Thus, the solution for part (b) is: G=(18353210)G = \begin{pmatrix} 1 & \frac{8}{3} & \frac{5}{3} \\ -2 & 1 & 0 \end{pmatrix}


Would you like further details on any steps or have questions about matrix operations?

Here are 5 follow-up questions you could explore:

  1. What are some properties of matrix addition and subtraction?
  2. How does matrix scalar multiplication work?
  3. Can we find the determinant of matrix GG in part (a)?
  4. How do we verify the solutions by substituting GG back into the original equations?
  5. What is the significance of the identity matrix in matrix equations?

Tip: When working with matrices, always ensure that the dimensions match for addition, subtraction, or multiplication operations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Matrix Addition
Matrix Scalar Multiplication
Matrix Subtraction

Formulas

Matrix Addition: A + B = C
Scalar Multiplication: cA = B
Matrix Equation: AX + B = C

Theorems

Properties of Matrices

Suitable Grade Level

Grades 10-12