Math Problem Statement

Solve this one

Solve the matrix operation involving 4 multiplied by the sum of two matrices.

Solution

Let's break down the given matrix equation step by step:

The expression is:

4([146542]+[461314])44 \left( \begin{bmatrix} 1 & -4 \\ -6 & 5 \\ -4 & 2 \end{bmatrix} + \begin{bmatrix} -4 & -6 \\ 1 & 3 \\ -1 & -4 \end{bmatrix} \right) 4

Step 1: Add the two matrices inside the parentheses.

[146542]+[461314]=[1+(4)4+(6)6+15+34+(1)2+(4)]\begin{bmatrix} 1 & -4 \\ -6 & 5 \\ -4 & 2 \end{bmatrix} + \begin{bmatrix} -4 & -6 \\ 1 & 3 \\ -1 & -4 \end{bmatrix} = \begin{bmatrix} 1 + (-4) & -4 + (-6) \\ -6 + 1 & 5 + 3 \\ -4 + (-1) & 2 + (-4) \end{bmatrix}

This results in:

[3105852]\begin{bmatrix} -3 & -10 \\ -5 & 8 \\ -5 & -2 \end{bmatrix}

Step 2: Multiply the result by 4.

We need to multiply each element of the resulting matrix by 4:

4×[3105852]=[4×(3)4×(10)4×(5)4×84×(5)4×(2)]4 \times \begin{bmatrix} -3 & -10 \\ -5 & 8 \\ -5 & -2 \end{bmatrix} = \begin{bmatrix} 4 \times (-3) & 4 \times (-10) \\ 4 \times (-5) & 4 \times 8 \\ 4 \times (-5) & 4 \times (-2) \end{bmatrix}

This gives:

[12402032208]\begin{bmatrix} -12 & -40 \\ -20 & 32 \\ -20 & -8 \end{bmatrix}

Final Answer:

The result of the given matrix operation is:

[12402032208]\begin{bmatrix} -12 & -40 \\ -20 & 32 \\ -20 & -8 \end{bmatrix}

Let me know if you'd like more details on any specific step!


Further Questions:

  1. How do you perform matrix addition in general?
  2. What happens when we multiply a matrix by a scalar?
  3. Can you perform matrix multiplication between two matrices? What's the condition?
  4. What is the difference between scalar and matrix multiplication?
  5. Can a non-square matrix be multiplied by itself?

Tip: Always verify matrix dimensions before performing addition or multiplication to ensure operations are valid!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Addition
Scalar Multiplication

Formulas

Matrix Addition: A + B = [a_ij + b_ij]
Scalar Multiplication: c * A = [c * a_ij]

Theorems

Associative Property of Addition: (A + B) + C = A + (B + C)
Distributive Property of Scalar Multiplication: c(A + B) = cA + cB

Suitable Grade Level

Grades 9-12