Math Problem Statement

Solve the logarithmic expressions from the image provided by the user.

Solution

The image contains five logarithmic expressions, and I'll help solve them step by step. Let's start by simplifying each of the logarithmic equations one by one.

1. 2log18+2log62log27^2\log 18 + ^2\log 6 - ^2\log 27

This can be simplified using the logarithmic properties:

  • 2loga+2logb=2log(ab)^2\log a + ^2\log b = ^2\log (a \cdot b)
  • 2loga2logb=2log(ab)^2\log a - ^2\log b = ^2\log \left(\frac{a}{b}\right)

Applying this: 2log(186)2log27=2log(18627)^2\log (18 \cdot 6) - ^2\log 27 = ^2\log \left(\frac{18 \cdot 6}{27}\right) 2log(10827)=2log4^2\log \left(\frac{108}{27}\right) = ^2\log 4

So, the expression simplifies to 2log4=2^2\log 4 = 2.

2. 3log7223log4+3log2^3\log 72 - 2 \cdot ^3\log 4 + ^3\log 2

Again using the properties:

  • nbloga=blog(an)n \cdot ^b\log a = ^b\log (a^n)
  • blogablogb=blog(ab)^b\log a - ^b\log b = ^b\log \left(\frac{a}{b}\right)

Simplifying step by step: 3log7223log4+3log2=3log723log(42)+3log2^3\log 72 - 2 \cdot ^3\log 4 + ^3\log 2 = ^3\log 72 - ^3\log (4^2) + ^3\log 2 =3log723log16+3log2=3log(72216)= ^3\log 72 - ^3\log 16 + ^3\log 2 = ^3\log \left(\frac{72 \cdot 2}{16}\right) =3log(14416)=3log9= ^3\log \left(\frac{144}{16}\right) = ^3\log 9

So, the expression simplifies to 3log9=2^3\log 9 = 2.

3. log300+2log3log0.27\log 300 + 2 \cdot \log 3 - \log 0.27

Simplifying the terms: 2log3=log32=log92 \cdot \log 3 = \log 3^2 = \log 9 Using the property: loga+logb=log(ab),logalogb=log(ab)\log a + \log b = \log (a \cdot b), \quad \log a - \log b = \log \left(\frac{a}{b}\right) log300+log9log0.27=log(30090.27)\log 300 + \log 9 - \log 0.27 = \log \left(\frac{300 \cdot 9}{0.27}\right) =log(27000.27)=log10000= \log \left(\frac{2700}{0.27}\right) = \log 10000

Thus, the result is log10000=4\log 10000 = 4.

4. 2log163log127+5log1^2\log 16 - ^3\log \frac{1}{27} + ^5\log 1

Simplifying:

  • blog1=0^b\log 1 = 0 (logarithm of 1 is always 0)
  • bloga1=bloga^b\log a^{-1} = - ^b\log a So: 2log163log127+5log1=2log16+3log27+0^2\log 16 - ^3\log \frac{1}{27} + ^5\log 1 = ^2\log 16 + ^3\log 27 + 0 Since 2log16=4^2\log 16 = 4 and 3log27=3^3\log 27 = 3, the expression becomes: 4+3=74 + 3 = 7

5. log242log2+log16\log 24 - 2 \cdot \log 2 + \log \frac{1}{6}

Simplifying: 2log2=log22=log42 \cdot \log 2 = \log 2^2 = \log 4 Using logarithmic properties: log24log4+log16=log(244)+log16\log 24 - \log 4 + \log \frac{1}{6} = \log \left(\frac{24}{4}\right) + \log \frac{1}{6} =log6+log16=log(616)= \log 6 + \log \frac{1}{6} = \log \left(6 \cdot \frac{1}{6}\right) =log1=0= \log 1 = 0

Thus, the expression simplifies to 0.


Summary of Results:

  1. 22
  2. 22
  3. 44
  4. 77
  5. 00

Would you like more details on any of these solutions?

Related Questions:

  1. What are the basic properties of logarithms?
  2. How do logarithmic functions relate to exponential functions?
  3. What are common mistakes made when simplifying logarithmic expressions?
  4. How do you apply logarithmic transformations in real-world problems?
  5. What are the different bases commonly used in logarithms (e.g., natural log, base-10 log)?

Tip:

Remember that the logarithmic identities loga+logb=log(ab)\log a + \log b = \log(ab) and logalogb=log(ab)\log a - \log b = \log \left(\frac{a}{b}\right) are your best tools for simplifying expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Algebra
Logarithmic Properties

Formulas

log_a(x) + log_a(y) = log_a(x * y)
log_a(x) - log_a(y) = log_a(x / y)
n * log_a(x) = log_a(x^n)

Theorems

Logarithmic Rules and Properties

Suitable Grade Level

Grades 10-12