Math Problem Statement

Logarithmic problems from the image, including simplifications and solving for x.

Solution

The image you provided contains logarithmic problems. Let's break down each question step by step.


6. Gunakan sifat alogbb=ba^{\log_b b} = b untuk menentukan hasil dari ekspresi berikut:

(Use the property alogbb=ba^{\log_b b} = b to find the result of the following expressions)

a. 100log66100^{\log_6 6}

  • Since alogbb=ba^{\log_b b} = b, this expression simplifies to 6.

b. 32log2232^{\log_2 2}

  • Applying the same property, the result is 2.

c. 25log5525^{\log_5 5}

  • Simplifying, the result is 5.

d. 4log884^{\log_8 8}

  • Simplifies to 8.

7. Gunakan sifat-sifat logaritma untuk menentukan hasil dari ekspresi berikut:

(Use logarithmic properties to find the result of the following expressions)

a. 2log128+2log92 \log 128 + 2 \log 9

  • Using the property nloga=logann \log a = \log a^n, this becomes: log1282+log92=log16384+log81=log(16384×81)=log1327104\log 128^2 + \log 9^2 = \log 16384 + \log 81 = \log (16384 \times 81) = \log 1327104 Result: log1327104\log 1327104.

b. log3912log88+2log66log327\log_3 9 - \frac{1}{2} \log_8 8 + 2 \log_6 6 - \log_3 27

  • Using properties: log39=2,12log88=121=12,2log66=21=2,log327=3\log_3 9 = 2, \quad \frac{1}{2} \log_8 8 = \frac{1}{2} \cdot 1 = \frac{1}{2}, \quad 2 \log_6 6 = 2 \cdot 1 = 2, \quad \log_3 27 = 3 Result: 212+23=0.52 - \frac{1}{2} + 2 - 3 = 0.5.

c. 4log778log55+3log884 \log_7 7 - 8 \log_5 5 + 3 \log_8 8

  • Simplifying: 4log77=4,8log55=8,3log88=34 \log_7 7 = 4, \quad 8 \log_5 5 = 8, \quad 3 \log_8 8 = 3 Result: 48+3=14 - 8 + 3 = -1.

8. Ubah bentuk logaritma berikut menjadi bentuk eksponen, lalu tentukan nilai xx yang memenuhi:

(Convert the following logarithmic forms to exponential forms and determine the value of xx)

a. logx=3\log x = 3

  • Rewrite as x=103x = 10^3.
  • Therefore, x=1000x = 1000.

b. 3log(2x+1)=23 \log (2x + 1) = 2

  • Divide both sides by 3: log(2x+1)=23\log (2x + 1) = \frac{2}{3}
  • Rewrite as an exponential: 2x+1=10232x + 1 = 10^{\frac{2}{3}} Solve for xx.

c. 14log(6x5)=1\frac{1}{4} \log (6x - 5) = -1

  • Multiply both sides by 4: log(6x5)=4\log (6x - 5) = -4
  • Rewrite as: 6x5=1046x - 5 = 10^{-4} Solve for xx.

Would you like more detailed solutions for any of these steps?


Here are 5 additional related questions to deepen your understanding:

  1. How do you simplify logarithmic expressions using properties like the product, quotient, and power rules?
  2. Can you explain how to solve equations involving logarithms and exponents?
  3. What is the significance of the change of base formula in logarithms?
  4. How do you interpret a logarithmic equation when solving for unknown values?
  5. Can you convert between logarithmic and exponential forms for any base?

Tip: Remember that logarithms and exponents are inverse operations, so understanding their relationship is key to solving many algebraic problems.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Exponential Functions
Logarithmic Properties
Algebra

Formulas

a^log_b(b) = b
log(a^n) = n*log(a)
Change of Base Formula

Theorems

Properties of Logarithms
Exponential-Logarithmic Relationship
Laws of Exponents

Suitable Grade Level

Grades 10-12