Math Problem Statement

Solve the following logarithmic problems:

Solution

Let's work through the questions from the image you've provided.

Problem 7:

Selesaikanlah.


a.
Jika loga2=m dan loga3=n, tentukanlah hubungan antara m dan n.\text{Jika } \frac{\log a}{2} = m \text{ dan } \frac{\log a}{3} = n, \text{ tentukanlah hubungan antara m dan n.} This problem is asking for the relationship between mm and nn, given that:

m=loga2andn=loga3m = \frac{\log a}{2} \quad \text{and} \quad n = \frac{\log a}{3}

To solve this, we can express loga\log a in terms of mm and nn:

m=loga2    loga=2mm = \frac{\log a}{2} \implies \log a = 2m n=loga3    loga=3nn = \frac{\log a}{3} \implies \log a = 3n

Now, since both expressions represent loga\log a, we equate them:

2m=3n2m = 3n

Thus, the relationship between mm and nn is:

m=32nm = \frac{3}{2}n


b.
Diketahui log25=p, nyatakanlah log2 dalam p.\text{Diketahui } \log 2^5 = p, \text{ nyatakanlah } \log 2 \text{ dalam } p. Given that log25=p\log 2^5 = p, we can simplify the logarithm using logarithmic rules:

log25=5log2\log 2^5 = 5 \log 2

So:

5log2=p5 \log 2 = p

To find log2\log 2 in terms of pp:

log2=p5\log 2 = \frac{p}{5}


c.
Jika x>0 dan x=1,log6=a dan log8=b, tentukan nilai dari 3ab.\text{Jika } x > 0 \text{ dan } x = 1, \log 6 = a \text{ dan } \log 8 = b, \text{ tentukan nilai dari } 3a - b. We are asked to find 3ab3a - b, given that log6=a\log 6 = a and log8=b\log 8 = b.

Using logarithmic properties, we can express aa and bb:

log6=log(23)=log2+log3\log 6 = \log (2 \cdot 3) = \log 2 + \log 3 log8=log23=3log2\log 8 = \log 2^3 = 3 \log 2

Thus:

a=log2+log3a = \log 2 + \log 3 b=3log2b = 3 \log 2

Now, substitute these into 3ab3a - b:

3ab=3(log2+log3)3log23a - b = 3(\log 2 + \log 3) - 3 \log 2

Simplify:

3ab=3log2+3log33log2=3log33a - b = 3 \log 2 + 3 \log 3 - 3 \log 2 = 3 \log 3

So:

3ab=3log33a - b = 3 \log 3


d.
Jika log5=p, tentukan nilai log10125.\text{Jika } \log 5 = p, \text{ tentukan nilai } \log_{10} 125. To find log10125\log_{10} 125, note that:

125=53125 = 5^3

Thus:

log125=log53=3log5\log 125 = \log 5^3 = 3 \log 5

Given that log5=p\log 5 = p, we substitute:

log125=3p\log 125 = 3p


e.
Jika log(ba)4=x, tentukan nilai dari log(a2b).\text{Jika } \log \left(\frac{b}{a}\right)^4 = x, \text{ tentukan nilai dari } \log \left(\frac{a^2}{b}\right). We are given that log(ba)4=x\log \left(\frac{b}{a}\right)^4 = x. Using logarithmic rules:

log(ba)4=4log(ba)\log \left(\frac{b}{a}\right)^4 = 4 \log \left(\frac{b}{a}\right)

Now, we need to find log(a2b)\log \left(\frac{a^2}{b}\right). Using logarithmic properties:

log(a2b)=loga2logb=2logalogb\log \left(\frac{a^2}{b}\right) = \log a^2 - \log b = 2 \log a - \log b

We can express log(ba)\log \left(\frac{b}{a}\right) as:

log(ba)=logbloga\log \left(\frac{b}{a}\right) = \log b - \log a

Now, solve for log(a2b)\log \left(\frac{a^2}{b}\right) in terms of xx.


Do you want more details on any specific step or concept?

Here are 5 related questions:

  1. Can you explain more about logarithmic properties, such as logab=bloga\log a^b = b \log a?
  2. How do we simplify logarithms involving products and quotients?
  3. What are the steps to change the base of a logarithm?
  4. How do we solve equations involving logarithmic expressions?
  5. Can you apply these logarithmic rules to natural logarithms?

Tip: Always check if logarithmic terms can be simplified using product, quotient, or power rules.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Logarithmic properties
Algebraic expressions

Formulas

log(a^b) = b * log(a)
log(a*b) = log(a) + log(b)
log(a/b) = log(a) - log(b)

Theorems

Logarithmic laws
Power rule of logarithms
Product and quotient rules

Suitable Grade Level

Grades 10-12