Math Problem Statement

lim(x→3) (sqrt(2x+3) - sqrt(x+6)) / (sqrt(x-1) - sqrt(8-2x))

Solution

This is a problem involving the computation of a limit involving square roots. The given expression is:

limx32x+3x+6x182x\lim_{x \to 3} \frac{\sqrt{2x + 3} - \sqrt{x + 6}}{\sqrt{x - 1} - \sqrt{8 - 2x}}

Step-by-step Solution:

Step 1: Analyze the Expression

At x=3x = 3, directly substituting leads to an indeterminate form 00\frac{0}{0}. To resolve this, we rationalize both the numerator and denominator.

Step 2: Rationalize the Numerator

The numerator is 2x+3x+6\sqrt{2x + 3} - \sqrt{x + 6}. Multiply and divide by the conjugate: 2x+3x+6=(2x+3x+6)(2x+3+x+6)2x+3+x+6\sqrt{2x + 3} - \sqrt{x + 6} = \frac{(\sqrt{2x + 3} - \sqrt{x + 6})(\sqrt{2x + 3} + \sqrt{x + 6})}{\sqrt{2x + 3} + \sqrt{x + 6}} =(2x+3)(x+6)2x+3+x+6= \frac{(2x + 3) - (x + 6)}{\sqrt{2x + 3} + \sqrt{x + 6}} =x32x+3+x+6= \frac{x - 3}{\sqrt{2x + 3} + \sqrt{x + 6}}

Step 3: Rationalize the Denominator

The denominator is x182x\sqrt{x - 1} - \sqrt{8 - 2x}. Similarly, multiply and divide by the conjugate: x182x=(x182x)(x1+82x)x1+82x\sqrt{x - 1} - \sqrt{8 - 2x} = \frac{(\sqrt{x - 1} - \sqrt{8 - 2x})(\sqrt{x - 1} + \sqrt{8 - 2x})}{\sqrt{x - 1} + \sqrt{8 - 2x}} =(x1)(82x)x1+82x= \frac{(x - 1) - (8 - 2x)}{\sqrt{x - 1} + \sqrt{8 - 2x}} =3x9x1+82x= \frac{3x - 9}{\sqrt{x - 1} + \sqrt{8 - 2x}}

Step 4: Simplify the Entire Expression

Now substitute these results into the original limit: limx32x+3x+6x182x=limx3x32x+3+x+63x9x1+82x\lim_{x \to 3} \frac{\sqrt{2x + 3} - \sqrt{x + 6}}{\sqrt{x - 1} - \sqrt{8 - 2x}} = \lim_{x \to 3} \frac{\frac{x - 3}{\sqrt{2x + 3} + \sqrt{x + 6}}}{\frac{3x - 9}{\sqrt{x - 1} + \sqrt{8 - 2x}}} Simplify the complex fraction: =limx3(x3)(x1+82x)(3x9)(2x+3+x+6)= \lim_{x \to 3} \frac{(x - 3)(\sqrt{x - 1} + \sqrt{8 - 2x})}{(3x - 9)(\sqrt{2x + 3} + \sqrt{x + 6})} Factor 3x93x - 9 as 3(x3)3(x - 3): =limx3(x3)(x1+82x)3(x3)(2x+3+x+6)= \lim_{x \to 3} \frac{(x - 3)(\sqrt{x - 1} + \sqrt{8 - 2x})}{3(x - 3)(\sqrt{2x + 3} + \sqrt{x + 6})} Cancel x3x - 3 (valid as x3,x30x \to 3, x - 3 \neq 0): =limx3x1+82x3(2x+3+x+6)= \lim_{x \to 3} \frac{\sqrt{x - 1} + \sqrt{8 - 2x}}{3(\sqrt{2x + 3} + \sqrt{x + 6})}

Step 5: Substitute x=3x = 3

Now substitute x=3x = 3 into the simplified expression: 31+82(3)3(2(3)+3+3+6)\frac{\sqrt{3 - 1} + \sqrt{8 - 2(3)}}{3(\sqrt{2(3) + 3} + \sqrt{3 + 6})} =2+23(9+9)= \frac{\sqrt{2} + \sqrt{2}}{3(\sqrt{9} + \sqrt{9})} =223(3+3)= \frac{2\sqrt{2}}{3(3 + 3)} =2218=29= \frac{2\sqrt{2}}{18} = \frac{\sqrt{2}}{9}

Final Answer:

limx32x+3x+6x182x=29\lim_{x \to 3} \frac{\sqrt{2x + 3} - \sqrt{x + 6}}{\sqrt{x - 1} - \sqrt{8 - 2x}} = \frac{\sqrt{2}}{9}

Would you like further clarification or more details on any step?

Related Questions:

  1. What are common strategies for solving indeterminate forms in limits?
  2. How do you recognize when to rationalize in a limit problem?
  3. Why is the cancellation of terms like x3x - 3 valid in this context?
  4. Can L’Hôpital’s Rule be applied to this problem?
  5. How would this problem change if the limit approached a different value (e.g., x2x \to 2)?

Tip:

Always check for indeterminate forms before proceeding with algebraic manipulations or special techniques like rationalization or L’Hôpital’s Rule.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Rationalization
Indeterminate Forms

Formulas

Rationalizing the numerator: (a - b)(a + b) = a^2 - b^2
Limit of an indeterminate form: L'Hôpital's Rule

Theorems

Limit Laws
Square Root Properties

Suitable Grade Level

College Level Calculus