Math Problem Statement
01.(FUVEST) Sejam π(π₯) = 2π₯ β 9 e π(π₯) = π₯ 2 + 5π₯ + 3. Qual Γ© o valor da soma dos valores absoli (mΓ³dulo) das raΓzes da equaΓ§Γ£o π(π(π₯)) = π(π₯)? 02.(GV) Sejam π e π duas funΓ§Γ΅es de R em R, tais que π(π₯) = 2π₯ e π(π₯) = 2 β π₯. Qual Γ© o valor de x na equaΓ§Γ£o π(π(π₯)) + π(π(π₯)) = π(π(π₯)) + π(π(π₯)). 03.(MACK) As funΓ§Γ΅es π(π₯) = 3 β 4π₯ e π(π₯) = 3π₯ + π, onde π Γ© uma constante, sΓ£o tais que π(π(π₯)) = π(π(π₯)), qualquer que seja x real. Nessas condiΓ§Γ΅es, qual Γ© o valor da constante π? 04.(MP) Sendo π(π₯) = 2π₯2 β π₯ + 1 e π(π₯) = π₯ β 2 funΓ§Γ΅es de R em R calcule: a) o valor de πππππππππ(3). b) os valores reais de x para que se tenha π(π(π₯)) β€ 2. π(π₯) 05.(ESPM) Considere as funΓ§Γ΅es π(π₯) = πππ2π₯ e π(π₯) = π₯ 2 β 2π₯, definidas para todo x real estritamente positivo. Se π > 0 e π(π(2π)) = 3, quanto vale π(π)? 06.(MACK) Sejam as funΓ§Γ΅es π e π de R em R, definidas por π(π₯) = π₯ 2 β 4π₯ + 10 e π(π₯) = β5π₯ + 20. Qual Γ© o valor da expressΓ£o π¦ = (π(4)) 2β π(π(4)) ? π(0) β π(π(0)) 07.(MACK) Se π(π₯) = βπ β π₯ 2, π(π₯) = βπ β π₯, e π(π(2)) = 2, calcule o valor de π(π(0)). 08.(MP) Para um nΓΊmero real fixo πΌ, a funΓ§Γ£o π(π₯) = πΌ. π₯ β 2 Γ© tal que π(π(1)) = β3. Qual Γ© o valor de πΌ? 09.(ESPM) Considere as funΓ§Γ΅es reais π(π₯) = 2π₯ + 1 e π(π₯) = π₯ β π, com π π R. Podemos afirmar que πππ(π₯) = πππ(π₯) para qualquer x real se o valor de π for igual a: a) 0 b) 1 c) 2 d) β 2 e) β 1 10.(ESPM) Na funΓ§Γ£o real π(π₯) = π. π₯ + π, com π e π reais e π β 0, sabe-se que π(π₯ 2 β 1) = 3π₯2 β 2 para qualquer x real. EntΓ£o, podemos afirmar que: a) π + π = 5 b) 2π β π = 5 c) π β π = 1 d) π β 2π = 0 11.(ESPM) Na funΓ§Γ£o π(π₯) = 2 π₯ β π₯, o valor de πππ(0) + πππ(1) + πππ(2) + πππ(3) Γ©: a) 28 b) 29 c) 30 d) 31 e) 32 e) π + 2π = 7 12.(MACK) Considere as funΓ§Γ΅es π(π₯) = 4π₯ + 5 e h(π₯) = 3π₯ β 2, definidas em R. Um estudante que resolve
Solution
Let's solve the problems step by step:
01. and
We need to find the value of the sum of the absolute values of the roots of the equation .
Substituting into :
Set this equal to :
Solve the quadratic equation:
Roots are:
Sum of the absolute values of the roots:
02. and
We need to find in the equation .
Calculate each function composition:
Substitute into the equation:
03. and
We need to find the value of the constant such that for any real .
Calculate each function composition:
Equate both compositions:
04. and
a) Calculate :
Therefore, .
b) Find the real values of for which :
Inequality:
Solve the quadratic inequality:
The values of that satisfy the inequality are .
Would you like more details or have any questions? Here are some additional problems you might consider:
- How do you solve quadratic equations by factoring?
- What is the process for finding the derivative of a function?
- How can you integrate a polynomial function?
- What are the properties of logarithms?
- How do you determine the convergence of a sequence?
Tip: Always verify your final answers by substituting them back into the original equations to ensure they satisfy all given conditions.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Function composition
Quadratic equations
Function equality
Formulas
-
Theorems
-
Suitable Grade Level
Grades 11-12
Related Recommendation
Function Composition Problems: Solutions and Explanations
Understanding Functions, Compositions, Inverses, and Matrix Operations
Solving Function Composition and Inverse Problems in Algebra
Solutions to Function, Composition, and Inverse Function Problems
Function Composition and Linear Depreciation with Example Problems