Math Problem Statement
01.(FUVEST) Sejam π(π₯) = 2π₯ β 9 e π(π₯) = π₯ 2 + 5π₯ + 3. Qual Γ© o valor da soma dos valores absoli (mΓ³dulo) das raΓzes da equação π(π(π₯)) = π(π₯)? 02.(GV) Sejam π e π duas funçáes de R em R, tais que π(π₯) = 2π₯ e π(π₯) = 2 β π₯. Qual Γ© o valor de x na equação π(π(π₯)) + π(π(π₯)) = π(π(π₯)) + π(π(π₯)). 03.(MACK) As funçáes π(π₯) = 3 β 4π₯ e π(π₯) = 3π₯ + π, onde π Γ© uma constante, sΓ£o tais que π(π(π₯)) = π(π(π₯)), qualquer que seja x real. Nessas condiçáes, qual Γ© o valor da constante π? 04.(MP) Sendo π(π₯) = 2π₯2 β π₯ + 1 e π(π₯) = π₯ β 2 funçáes de R em R calcule: a) o valor de πππππππππ(3). b) os valores reais de x para que se tenha π(π(π₯)) β€ 2. π(π₯) 05.(ESPM) Considere as funçáes π(π₯) = πππ2π₯ e π(π₯) = π₯ 2 β 2π₯, definidas para todo x real estritamente positivo. Se π > 0 e π(π(2π)) = 3, quanto vale π(π)? 06.(MACK) Sejam as funçáes π e π de R em R, definidas por π(π₯) = π₯ 2 β 4π₯ + 10 e π(π₯) = β5π₯ + 20. Qual Γ© o valor da expressΓ£o π¦ = (π(4)) 2β π(π(4)) ? π(0) β π(π(0)) 07.(MACK) Se π(π₯) = βπ β π₯ 2, π(π₯) = βπ β π₯, e π(π(2)) = 2, calcule o valor de π(π(0)). 08.(MP) Para um nΓΊmero real fixo πΌ, a função π(π₯) = πΌ. π₯ β 2 Γ© tal que π(π(1)) = β3. Qual Γ© o valor de πΌ? 09.(ESPM) Considere as funçáes reais π(π₯) = 2π₯ + 1 e π(π₯) = π₯ β π, com π π R. Podemos afirmar que πππ(π₯) = πππ(π₯) para qualquer x real se o valor de π for igual a: a) 0 b) 1 c) 2 d) β 2 e) β 1 10.(ESPM) Na função real π(π₯) = π. π₯ + π, com π e π reais e π β 0, sabe-se que π(π₯ 2 β 1) = 3π₯2 β 2 para qualquer x real. EntΓ£o, podemos afirmar que: a) π + π = 5 b) 2π β π = 5 c) π β π = 1 d) π β 2π = 0 11.(ESPM) Na função π(π₯) = 2 π₯ β π₯, o valor de πππ(0) + πππ(1) + πππ(2) + πππ(3) Γ©: a) 28 b) 29 c) 30 d) 31 e) 32 e) π + 2π = 7 12.(MACK) Considere as funçáes π(π₯) = 4π₯ + 5 e h(π₯) = 3π₯ β 2, definidas em R. Um estudante que resolve
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Function composition
Quadratic equations
Function equality
Formulas
-
Theorems
-
Suitable Grade Level
Grades 11-12
Related Recommendation
Function Composition Problems: Solutions and Explanations
Solving Function Composition and Inverse Problems in Algebra
Solutions to Function, Composition, and Inverse Function Problems
Function Composition and Linear Depreciation with Example Problems
Detailed Solution for Exercises on Function Composition and Inequalities