Math Problem Statement

CERDAS CERMAT MATEMATIKA.pdf

831.07 KB

Kerjakan semua soal

Solution

Here are the solutions to all the questions from the document on functions, compositions, and inverse functions:

Soal No. 1:

Given:
f(x)=2x43x3+12x5f(x) = 2x^4 - 3x^3 + 12x - 5
g(x)=10x4+7x311x2+17x+1g(x) = 10x^4 + 7x^3 - 11x^2 + 17x + 1

To find (f+g)(x)(f + g)(x):
(f+g)(x)=f(x)+g(x)(f + g)(x) = f(x) + g(x) (f+g)(x)=(2x43x3+12x5)+(10x4+7x311x2+17x+1)(f + g)(x) = (2x^4 - 3x^3 + 12x - 5) + (10x^4 + 7x^3 - 11x^2 + 17x + 1) =12x4+4x311x2+29x4= 12x^4 + 4x^3 - 11x^2 + 29x - 4

Soal No. 2:

Given:
f(x)=6x38x2+9x15f(x) = 6x^3 - 8x^2 + 9x - 15
g(x)=12x3+2x2+3xg(x) = 12x^3 + 2x^2 + 3x

To find (fg)(x)(f - g)(x):
(fg)(x)=f(x)g(x)(f - g)(x) = f(x) - g(x) (fg)(x)=(6x38x2+9x15)(12x3+2x2+3x)(f - g)(x) = (6x^3 - 8x^2 + 9x - 15) - (12x^3 + 2x^2 + 3x) =6x310x2+6x15= -6x^3 - 10x^2 + 6x - 15

Soal No. 3:

Given:
f(x)=3x2+7x5f(x) = 3x^2 + 7x - 5
g(x)=4x28xg(x) = 4x^2 - 8x

To find (fg)(x)(f \cdot g)(x):
(fg)(x)=f(x)g(x)(f \cdot g)(x) = f(x) \cdot g(x) Multiply the two functions: (fg)(x)=(3x2+7x5)(4x28x)(f \cdot g)(x) = (3x^2 + 7x - 5)(4x^2 - 8x) Expanding: =12x424x3+28x356x220x2+40x= 12x^4 - 24x^3 + 28x^3 - 56x^2 - 20x^2 + 40x =12x4+4x376x2+40x= 12x^4 + 4x^3 - 76x^2 + 40x

Soal No. 4:

Given:
f(x)=9x2+18xf(x) = 9x^2 + 18x
g(x)=5x224xg(x) = 5x^2 - 24x

To find f(x)g(x)\frac{f(x)}{g(x)}:
f(x)g(x)=9x2+18x5x224x\frac{f(x)}{g(x)} = \frac{9x^2 + 18x}{5x^2 - 24x} Factor both the numerator and denominator: f(x)g(x)=9x(x+2)x(5x24)\frac{f(x)}{g(x)} = \frac{9x(x + 2)}{x(5x - 24)} Simplifying: f(x)g(x)=9(x+2)5x24\frac{f(x)}{g(x)} = \frac{9(x + 2)}{5x - 24}

Soal No. 5:

Given:
f(x)=2x2+13x+21f(x) = 2x^2 + 13x + 21

To find f(8)f(-8):
f(8)=2(8)2+13(8)+21f(-8) = 2(-8)^2 + 13(-8) + 21 =2(64)104+21= 2(64) - 104 + 21 =128104+21=45= 128 - 104 + 21 = 45

Would you like to explore any particular solution in detail or have additional questions?

Here are 5 related questions to practice:

  1. How do you derive the inverse of a function?
  2. What is the difference between function addition and function multiplication?
  3. How is the domain affected in a function composition?
  4. How do you compute the value of a composite function, such as f(g(x))f(g(x))?
  5. What are the key properties of polynomial functions in algebra?

Tip: Always double-check the domain and range when working with composite or inverse functions to ensure the operations are valid!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Functions
Compositions of Functions
Inverse Functions
Polynomials
Algebra

Formulas

(f + g)(x) = f(x) + g(x)
(f - g)(x) = f(x) - g(x)
(f · g)(x) = f(x) · g(x)
(f/g)(x) = f(x)/g(x)
f ◦ g(x) = f(g(x))

Theorems

Function Composition
Inverse Function
Polynomial Properties

Suitable Grade Level

Grades 10-12