Let's break this down step by step, focusing on each part of the question.
14. f(g(2))
Given:
- f(x)=2x−3
- g(x)=4−x2
We first need to evaluate g(2) and then substitute the result into f(x):
- g(2)=4−(2)2=4−4=0
- f(g(2))=f(0)=2(0)−3=−3
Thus, f(g(2))=−3.
15. f(f(1))
We need to evaluate f(1) first and then substitute that value back into f(x).
- f(1)=2(1)−3=2−3=−1
- f(f(1))=f(−1)=2(−1)−3=−2−3=−5
Thus, f(f(1))=−5.
16. (f∘g)(6)
This is f(g(6)). First, we evaluate g(6), then substitute it into f(x).
- g(6)=4−(6)2=4−36=−32
- f(g(6))=f(−32)=2(−32)−3=−64−3=−67
Thus, (f∘g)(6)=−67.
17. (f∘f)(5)
This is f(f(5)). First, evaluate f(5), then substitute it back into f(x).
- f(5)=2(5)−3=10−3=7
- f(f(5))=f(7)=2(7)−3=14−3=11
Thus, (f∘f)(5)=11.
18. Find the compositions of functions
(a) f∘g
The composition (f∘g)(x) means f(g(x)). We substitute g(x)=4−x2 into f(x)=2x−3:
(f∘g)(x)=f(g(x))=f(4−x2)=2(4−x2)−3=8−2x2−3=5−2x2
Thus, (f∘g)(x)=5−2x2.
(b) g∘f
The composition (g∘f)(x) means g(f(x)). We substitute f(x)=2x−3 into g(x)=4−x2:
(g∘f)(x)=g(f(x))=g(2x−3)=4−(2x−3)2=4−(4x2−12x+9)=4−4x2+12x−9
(g∘f)(x)=−4x2+12x−5
Thus, (g∘f)(x)=−4x2+12x−5.
(c) f∘f
The composition (f∘f)(x) is f(f(x)):
(f∘f)(x)=f(f(x))=f(2x−3)=2(2x−3)−3=4x−6−3=4x−9
Thus, (f∘f)(x)=4x−9.
(d) g∘g
The composition (g∘g)(x) is g(g(x)):
(g∘g)(x)=g(g(x))=g(4−x2)=4−(4−x2)2=4−(16−8x2+x4)=4−16+8x2−x4
(g∘g)(x)=−12+8x2−x4
Thus, (g∘g)(x)=−x4+8x2−12.
Domains of the functions
- f(x)=2x−3: Domain is all real numbers R.
- g(x)=4−x2: Domain is all real numbers R.
- f∘g: Domain is all real numbers R (since both functions are defined for all x).
- g∘f: Domain is all real numbers R.
- f∘f: Domain is all real numbers R.
- g∘g: Domain is all real numbers R.
Would you like to go over any part of the solution in more detail?
Related questions:
- How do you determine the domain of composite functions?
- What is the difference between f∘g and g∘f?
- Can you find the composition of inverse functions?
- What is the range of f(x)=2x−3?
- How do transformations affect the graph of f(x) and g(x)?
Tip: When composing functions, always evaluate the inner function first and then substitute its result into the outer function.