Math Problem Statement
Linear de. y’(x) -3y(x) = x
Solution
The given differential equation is:
This is a first-order linear differential equation of the form:
where and .
Step 1: Find the Integrating Factor (IF)
The integrating factor, , is given by:
Since , we compute the integral:
So, the integrating factor becomes:
Step 2: Multiply the Equation by the Integrating Factor
Now, multiply both sides of the differential equation by :
This simplifies to:
Step 3: Integrate Both Sides
Next, integrate both sides with respect to :
The left-hand side is simply:
To integrate , we use integration by parts. Let:
- and
- Then and
Using integration by parts:
Thus, the integral becomes:
where is the constant of integration.
Step 4: Solve for
Now, multiply both sides by to solve for :
Final Solution
The general solution to the differential equation is:
where is an arbitrary constant.
Would you like further details on any of the steps or explanations?
Here are 5 related questions you might explore next:
- What is the general approach to solving other first-order linear differential equations?
- How do you apply integration by parts in this type of problem?
- What are the different methods to solve linear differential equations with non-constant coefficients?
- How does the integrating factor method work for equations with other forms of ?
- How can you use this solution to find particular solutions if initial conditions are given?
Tip: Always check for an appropriate integrating factor, as it simplifies many linear differential equations.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
First-order linear differential equations
Integrating factor method
Integration by parts
Formulas
y'(x) + p(x)y(x) = q(x)
Integrating Factor: μ(x) = e^(∫p(x) dx)
General Solution: y(x) = (-x/3) + (1/9) + C e^(3x)
Theorems
Method of Integrating Factor
Integration by Parts
Suitable Grade Level
Grades 11-12
Related Recommendation
Solving First-Order Linear Differential Equation: y' + y = 3x
Solving First-Order Linear Differential Equation y' = x + y using Integrating Factors
Solving First-Order Linear Differential Equation y' + y = x
Solving the Differential Equation dy/dx + 2y = x Using Integrating Factor
Find the Integration Factor for Differential Equation y' + 3y = x