Math Problem Statement

solve the exponential equation using points (85.27772,0), (0,27.5917), (75.34961,10) and (41.41311,24.15377). To see if u are correct it should y=-98.4\cdot e^{\left(0.044x-5\right)}+28.254716.

Solution

To solve an exponential equation using the given points and confirm the function, we start by understanding the structure of the equation. The general form of an exponential function can be written as:

y=ae(bx+c)+dy = a \cdot e^{(bx + c)} + d

Given points:

  1. (85.27772,0)(85.27772, 0)
  2. (0,27.5917)(0, 27.5917)
  3. (75.34961,10)(75.34961, 10)
  4. (41.41311,24.15377)(41.41311, 24.15377)

We need to find the constants aa, bb, cc, and dd.

Step 1: Analyzing the provided function

The function provided for verification is: y=98.4e(0.044x5)+28.254716y = -98.4 \cdot e^{(0.044x - 5)} + 28.254716

This can be rewritten in the form: y=98.4e(0.044x)5+28.254716y = -98.4 \cdot e^{(0.044x) - 5} + 28.254716 Here, a=98.4a = -98.4, b=0.044b = 0.044, c=5c = -5, and d=28.254716d = 28.254716.

Step 2: Verify the function using the given points

We will plug in each of the points into the function y=98.4e(0.044x5)+28.254716y = -98.4 \cdot e^{(0.044x - 5)} + 28.254716 and check if it holds true for each point.

  1. For point (85.27772,0)(85.27772, 0):

    y=98.4e(0.044×85.277725)+28.254716y = -98.4 \cdot e^{(0.044 \times 85.27772 - 5)} + 28.254716 y=98.4e(3.751817685)+28.254716y = -98.4 \cdot e^{(3.75181768 - 5)} + 28.254716 y=98.4e1.24818232+28.254716y = -98.4 \cdot e^{-1.24818232} + 28.254716 y98.40.287(e1.24818232)+28.254716y \approx -98.4 \cdot 0.287 (e^{-1.24818232}) + 28.254716 y0y \approx 0

  2. For point (0,27.5917)(0, 27.5917):

    y=98.4e(0.044×05)+28.254716y = -98.4 \cdot e^{(0.044 \times 0 - 5)} + 28.254716 y=98.4e5+28.254716y = -98.4 \cdot e^{-5} + 28.254716 y98.40.0067(e5)+28.254716y \approx -98.4 \cdot 0.0067 (e^{-5}) + 28.254716 y27.5917y \approx 27.5917

  3. For point (75.34961,10)(75.34961, 10):

    y=98.4e(0.044×75.349615)+28.254716y = -98.4 \cdot e^{(0.044 \times 75.34961 - 5)} + 28.254716 y=98.4e(3.314982845)+28.254716y = -98.4 \cdot e^{(3.31498284 - 5)} + 28.254716 y=98.4e1.68501716+28.254716y = -98.4 \cdot e^{-1.68501716} + 28.254716 y98.40.185(e1.68501716)+28.254716y \approx -98.4 \cdot 0.185 (e^{-1.68501716}) + 28.254716 y10y \approx 10

  4. For point (41.41311,24.15377)(41.41311, 24.15377):

    y=98.4e(0.044×41.413115)+28.254716y = -98.4 \cdot e^{(0.044 \times 41.41311 - 5)} + 28.254716 y=98.4e(1.821176845)+28.254716y = -98.4 \cdot e^{(1.82117684 - 5)} + 28.254716 y=98.4e3.17882316+28.254716y = -98.4 \cdot e^{-3.17882316} + 28.254716 y98.40.041(e3.17882316)+28.254716y \approx -98.4 \cdot 0.041 (e^{-3.17882316}) + 28.254716 y24.15377y \approx 24.15377

Since the points satisfy the given function y=98.4e(0.044x5)+28.254716y = -98.4 \cdot e^{(0.044x - 5)} + 28.254716, this confirms that the equation is correct.

Do you want details or have any questions?

Here are 5 related questions:

  1. How can we solve an exponential equation if only two points are given?
  2. What is the significance of the constant cc in the exponential equation?
  3. How does the value of aa affect the shape of the exponential curve?
  4. Can exponential models be used to represent real-world phenomena? If so, what are some examples?
  5. What happens to the graph of an exponential function when the value of bb changes?

Tip: Exponential equations often describe processes involving growth or decay, such as population dynamics, radioactive decay, or interest calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponential Functions
Exponential Equations

Formulas

Exponential function form: y = a * e^(bx + c) + d

Theorems

-

Suitable Grade Level

Advanced High School