Math Problem Statement

Solve

Solve the double integral over the positive quadrant of the circle x^2 + y^2 = 4.

Solution

To solve this integral, let us evaluate the given double integral over the positive quadrant of the circle x2+y2=4x^2 + y^2 = 4. Here's a step-by-step explanation:


Step 1: Interpret the Problem

The integral is: Dxydxdy\iint_{D} x y \, dx \, dy where DD is the positive quadrant (x0x \geq 0, y0y \geq 0) of the circle x2+y2=4x^2 + y^2 = 4.

Step 2: Convert to Polar Coordinates

We convert the integral to polar coordinates using the following relations: x=rcosθ,y=rsinθ,dxdy=rdrdθ.x = r \cos\theta, \quad y = r \sin\theta, \quad dx\,dy = r\,dr\,d\theta. The equation x2+y2=4x^2 + y^2 = 4 in polar coordinates becomes r2=4r^2 = 4, or r=2r = 2.

For the positive quadrant, the limits of rr and θ\theta are: 0r2,0θπ2.0 \leq r \leq 2, \quad 0 \leq \theta \leq \frac{\pi}{2}.

The integral becomes: Dxydxdy=0π202(rcosθ)(rsinθ)rdrdθ.\iint_{D} x y \, dx \, dy = \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} (r\cos\theta)(r\sin\theta) \cdot r \, dr \, d\theta.

Step 3: Simplify the Integral

Simplify the integrand: (rcosθ)(rsinθ)r=r3cosθsinθ.(r\cos\theta)(r\sin\theta) \cdot r = r^3 \cos\theta \sin\theta.

Thus, the integral becomes: 0π202r3cosθsinθdrdθ.\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} r^3 \cos\theta \sin\theta \, dr \, d\theta.

Step 4: Separate the Variables

The integral separates as: 0π2cosθsinθdθ02r3dr.\int_{0}^{\frac{\pi}{2}} \cos\theta \sin\theta \, d\theta \cdot \int_{0}^{2} r^3 \, dr.

Evaluate the rr-Integral:

02r3dr=[r44]02=244044=164=4.\int_{0}^{2} r^3 \, dr = \left[ \frac{r^4}{4} \right]_{0}^{2} = \frac{2^4}{4} - \frac{0^4}{4} = \frac{16}{4} = 4.

Evaluate the θ\theta-Integral:

0π2cosθsinθdθ.\int_{0}^{\frac{\pi}{2}} \cos\theta \sin\theta \, d\theta. Using the identity cosθsinθ=12sin(2θ)\cos\theta \sin\theta = \frac{1}{2} \sin(2\theta), we rewrite the integral: 0π2cosθsinθdθ=120π2sin(2θ)dθ.\int_{0}^{\frac{\pi}{2}} \cos\theta \sin\theta \, d\theta = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin(2\theta) \, d\theta.

The integral of sin(2θ)\sin(2\theta) is: sin(2θ)dθ=12cos(2θ).\int \sin(2\theta) \, d\theta = -\frac{1}{2} \cos(2\theta).

Thus: [ \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin(2\theta) , d\theta = \frac{1}{2} \left[ -\frac{1}{2} \cos(2\theta) \right]_{0}^{\frac{\pi}{2}} = \frac{1}{2} \left[ -\frac{1}{2}(\cos(\pi) - \cos(0)) \right]. ]

Simplify: cos(π)=1,cos(0)=1.\cos(\pi) = -1, \quad \cos(0) = 1. [ \frac{1}{2} \left[ -\frac{1}{2}((-1) - 1) \right] = \frac{1}{2} \left[ -\frac{1}{2}(-2) \right] = \frac{1}{2} \cdot 1 = \frac{1}{2}. ]

Step 5: Combine the Results

Multiply the results of the two integrals: 0π2cosθsinθdθ02r3dr=124=2.\int_{0}^{\frac{\pi}{2}} \cos\theta \sin\theta \, d\theta \cdot \int_{0}^{2} r^3 \, dr = \frac{1}{2} \cdot 4 = 2.

Final Answer:

2\boxed{2}

Let me know if you'd like further explanation or details!


Related Questions

  1. How do we convert between Cartesian and polar coordinates for integrals?
  2. What are the typical bounds for integrals in polar coordinates when working with circles?
  3. How does the Jacobian factor rr arise in polar coordinate transformations?
  4. Can this problem be solved without using polar coordinates? Why or why not?
  5. What changes if the integration region is the full circle instead of the positive quadrant?

Tip:

When dealing with circular or radial symmetry in double integrals, polar coordinates often simplify the computation significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Double Integrals
Polar Coordinates
Circle Geometry

Formulas

x = r cos(θ), y = r sin(θ), dx dy = r dr dθ
r^2 = 4, so r = 2 for the circle
cos(θ) sin(θ) = (1/2) sin(2θ)

Theorems

Polar Coordinate Transformation
Product of Trigonometric Functions

Suitable Grade Level

College-Level Calculus (Advanced Calculus)