Math Problem Statement

a^3b+ab^3 if a-b=5 and a*b=7

Solution

We are tasked with finding the value of a3b+ab3a^3b + ab^3 given that ab=5a - b = 5 and ab=7ab = 7.

Step 1: Express aa and bb in terms of their sum or difference

Let: S=a+b,P=abS = a + b, \quad P = ab We know that: ab=5andab=7a - b = 5 \quad \text{and} \quad ab = 7 From the first equation: a=b+5a = b + 5

Step 2: Substitute a=b+5a = b + 5 into ab=7ab = 7

(b+5)b=7(b + 5)b = 7 b2+5b7=0b^2 + 5b - 7 = 0

Step 3: Solve the quadratic equation

The quadratic equation is: b2+5b7=0b^2 + 5b - 7 = 0 We use the quadratic formula: b=B±B24AC2Ab = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} Here, A=1A = 1, B=5B = 5, and C=7C = -7: b=5±524(1)(7)2(1)b = \frac{-5 \pm \sqrt{5^2 - 4(1)(-7)}}{2(1)} b=5±25+282b = \frac{-5 \pm \sqrt{25 + 28}}{2} b=5±532b = \frac{-5 \pm \sqrt{53}}{2}

Thus: b=5+532orb=5532b = \frac{-5 + \sqrt{53}}{2} \quad \text{or} \quad b = \frac{-5 - \sqrt{53}}{2}

Step 4: Find aa

Using a=b+5a = b + 5:

  1. For b=5+532b = \frac{-5 + \sqrt{53}}{2}: a=5+532+5=5+53+102=5+532a = \frac{-5 + \sqrt{53}}{2} + 5 = \frac{-5 + \sqrt{53} + 10}{2} = \frac{5 + \sqrt{53}}{2}

  2. For b=5532b = \frac{-5 - \sqrt{53}}{2}: a=5532+5=553+102=5532a = \frac{-5 - \sqrt{53}}{2} + 5 = \frac{-5 - \sqrt{53} + 10}{2} = \frac{5 - \sqrt{53}}{2}

Thus, the two pairs of (a,b)(a, b) are: (5+532,5+532)and(5532,5532)\left( \frac{5 + \sqrt{53}}{2}, \frac{-5 + \sqrt{53}}{2} \right) \quad \text{and} \quad \left( \frac{5 - \sqrt{53}}{2}, \frac{-5 - \sqrt{53}}{2} \right)

Step 5: Compute a3b+ab3a^3b + ab^3

Factor a3b+ab3a^3b + ab^3 as: a3b+ab3=ab(a2+b2)a^3b + ab^3 = ab(a^2 + b^2)

Compute a2+b2a^2 + b^2

Using the identity: a2+b2=(a+b)22aba^2 + b^2 = (a + b)^2 - 2ab a+b=S=5(from the sum of roots of the quadratic)andab=7a + b = S = 5 \quad \text{(from the sum of roots of the quadratic)} \quad \text{and} \quad ab = 7 a2+b2=522(7)=2514=11a^2 + b^2 = 5^2 - 2(7) = 25 - 14 = 11

Compute a3b+ab3a^3b + ab^3

a3b+ab3=ab(a2+b2)=7(11)=77a^3b + ab^3 = ab(a^2 + b^2) = 7(11) = 77

Final Answer:

a3b+ab3=77a^3b + ab^3 = 77


Would you like further explanation or details?

Related Questions:

  1. How do we use the quadratic formula to solve equations in general?
  2. Why does a2+b2=(a+b)22aba^2 + b^2 = (a+b)^2 - 2ab work as an identity?
  3. Could you calculate a4b+ab4a^4b + ab^4 for the same aa and bb?
  4. How would the solution change if ab=7ab = -7?
  5. What are the applications of symmetric polynomials like a3b+ab3a^3b + ab^3?

Tip: Always double-check quadratic solutions by substituting back into the original equation!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Equations
Polynomials

Formulas

Quadratic formula
Sum of squares identity
Factorization of a^3b + ab^3 as ab(a^2 + b^2)

Theorems

Quadratic formula
Sum of squares identity

Suitable Grade Level

Grades 10-12