Math Problem Statement

give me the direct answer for each point of the question

Complete the following phrases in the math problem provided in the image.

Solution

Here are the direct answers to the questions in the provided image:


  1. x4x2+1dx=x33x+ln(x2+1)+C\int \frac{x^4}{x^2 + 1} dx = \frac{x^3}{3} - x + \ln(x^2 + 1) + C
  2. sin3xsin2xdx=112cos3x+18cos5x124cosx+C-\int \sin 3x \sin^2 x \, dx = \frac{-1}{12} \cos 3x + \frac{1}{8} \cos 5x - \frac{1}{24} \cos x + C
  3. dx1+cos2x=12tan1(tanx2)+C\int \frac{dx}{1 + \cos^2 x} = \frac{1}{\sqrt{2}} \tan^{-1} \left( \frac{\tan x}{\sqrt{2}} \right) + C
  4. sinxsinnxdx=sin(n1)x2(n1)sin(n+1)x2(n+1)+C\int \sin x \sin nx \, dx = \frac{\sin(n-1)x}{2(n-1)} - \frac{\sin(n+1)x}{2(n+1)} + C
  5. If coshx=45\cosh x = \frac{4}{5}, then cosh2x=4125\cosh 2x = \frac{41}{25}
  6. ddx0xsin3tdt=sin3x\frac{d}{dx} \int_0^x \sin^3 t \, dt = \sin^3 x
  7. x24dx=x2x242ln(x+x24)+C\int \sqrt{x^2 - 4} \, dx = \frac{x}{2} \sqrt{x^2 - 4} - 2 \ln \left( x + \sqrt{x^2 - 4} \right) + C
  8. 0π/2xsinx+cosxdx=π4ln2\int_0^{\pi/2} \frac{x}{\sin x + \cos x} \, dx = \frac{\pi}{4} \ln 2
  9. sinnxdx=1nsinn1xcosx+n1nsinn2xdx-\int \sin^n x \, dx = \frac{-1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx
  10. sin4xcos5xdx=cos6x6cos8x8+cos10x10+C\int \sin^4 x \cos^5 x \, dx = \frac{\cos^6 x}{6} - \frac{\cos^8 x}{8} + \frac{\cos^{10} x}{10} + C
  11. sin10xdx=12(1cos2x)5dx\int \sin^{10} x \, dx = \frac{1}{2} \int (1 - \cos 2x)^5 \, dx
  12. The inverse of the function f(x)=x23x+2f(x) = x^2 - 3x + 2 is f1(x)=3±94(x2)2f^{-1}(x) = \frac{3 \pm \sqrt{9 - 4(x-2)}}{2}
  13. The inverse of f(x)=ln(x+1)f(x) = \ln(x + 1) is f1(x)=ex1f^{-1}(x) = e^x - 1
  14. (coshx+sinhx)4dx=e4xdx=e4x4+C\int (\cosh x + \sinh x)^4 \, dx = \int e^{4x} \, dx = \frac{e^{4x}}{4} + C
  15. x2+8x+7dx=(x+4)x2+8x+72lnx+4+x2+8x+7+C\int \sqrt{x^2 + 8x + 7} \, dx = \frac{(x+4)\sqrt{x^2 + 8x + 7}}{2} - \ln\left| x + 4 + \sqrt{x^2 + 8x + 7} \right| + C
  16. The range of the function f(x)=x23x+2f(x) = \sqrt{x^2 - 3x + 2} is [0,+)[0, +\infty)
  17. xx3+3dx=13lnx3+3+C\int \frac{x}{x^3 + 3} \, dx = \frac{1}{3} \ln |x^3 + 3| + C
  18. 3x+5x25x+4dx=lnx4lnx1+C\int \frac{3x + 5}{x^2 - 5x + 4} \, dx = \ln|x-4| - \ln|x-1| + C
  19. Approximating lines of the function f(x)=8x21f(x) = \frac{8}{x^2 - 1}: Asymptotes are y=0 and x=±1\text{Asymptotes are } y = 0 \text{ and } x = \pm 1

Let me know if you'd like me to explain any of these answers in detail or clarify something further.

Related Questions:

  1. How is the range of a square root function determined?
  2. What are common techniques to compute definite integrals with limits?
  3. How is the inverse of a logarithmic function derived?
  4. Why are trigonometric identities essential in integral computation?
  5. How do you solve integrals involving hyperbolic functions?

Tip:

When solving definite integrals, always check the boundaries to ensure that the function is defined and continuous within the interval.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration Techniques
Trigonometric Functions
Inverse Functions
Hyperbolic Functions
Definite and Indefinite Integrals
Logarithmic Functions
Square Root Functions

Formulas

Integration by parts
Trigonometric identities
Hyperbolic function properties
Inverse function properties
Logarithmic and exponential rules

Theorems

Fundamental Theorem of Calculus
Properties of definite integrals
Hyperbolic and inverse trigonometric relations

Suitable Grade Level

Undergraduate (Calculus I and II)