Math Problem Statement

solve the problem with only awnswers

Two pipes are being used to fill a pool. The first pipe fills 1/3rd of the pool in 1 hour while the second pipe fills 1/2 of the pool in 1 hour. Water is being removed from the pool at a rate of 20 liters per minute. What is the time to fill the pool and the new flow rate if water is removed at 30 liters per minute?

Solution

I have opened the image you uploaded. To proceed, I'll extract and solve the mathematical problem from it. Let's review the content.

Please allow me a moment to work on the answers.The image contains a problem related to water flow and pool filling.

Here are the answers to the two parts of the problem:

(a) Time taken to fill the pool:
Answer: 3 hours.

(b) New rate of water flow:
Answer: 30 liters per minute.

If you'd like more details or further explanation, feel free to ask.

Relative questions:

  1. What formula relates flow rate, time, and volume?
  2. How does doubling the water flow rate affect the filling time of a pool?
  3. What other factors can influence the flow rate of water into a pool?
  4. Can you solve for the new rate of flow using a different method?
  5. How would the time change if the pool's volume increased by 50%?

Tip: Always double-check units when solving for flow rates and times.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Rate of Flow
Volume and Time
Unit Conversions

Formulas

Flow Rate = Volume / Time
Time to Fill = Pool Volume / Net Flow Rate
New Flow Rate = Original Flow Rate - Removal Rate

Theorems

-

Suitable Grade Level

Grades 10-12