Math Problem Statement

Solve the simultaneous system: x ≡ 2 (mod 3), x ≡ 4 (mod 5), x ≡ 6 (mod 13).

Solution

To solve this system of simultaneous congruences, we can apply the Chinese Remainder Theorem (CRT). This theorem provides a solution when the moduli are pairwise coprime, as they are here (3, 5, and 13 are pairwise coprime). Here’s the process:

Given: x2(mod3)x \equiv 2 \pmod{3} x4(mod5)x \equiv 4 \pmod{5} x6(mod13)x \equiv 6 \pmod{13}

Step 1: Find the product of the moduli

The product of the moduli NN is: N=3×5×13=195N = 3 \times 5 \times 13 = 195

Step 2: Compute each partial product Ni=NniN_i = \frac{N}{n_i} for each congruence

  1. For x2(mod3)x \equiv 2 \pmod{3}, N1=1953=65N_1 = \frac{195}{3} = 65.
  2. For x4(mod5)x \equiv 4 \pmod{5}, N2=1955=39N_2 = \frac{195}{5} = 39.
  3. For x6(mod13)x \equiv 6 \pmod{13}, N3=19513=15N_3 = \frac{195}{13} = 15.

Step 3: Find the modular inverse of each NiN_i modulo nin_i

We need to find integers M1,M2,M_1, M_2, and M3M_3 such that:

  1. 65M11(mod3)65M_1 \equiv 1 \pmod{3}
  2. 39M21(mod5)39M_2 \equiv 1 \pmod{5}
  3. 15M31(mod13)15M_3 \equiv 1 \pmod{13}

Calculating each MiM_i:

  1. For 65M11(mod3)65M_1 \equiv 1 \pmod{3}: 652(mod3)65 \equiv 2 \pmod{3} We need 2M11(mod3)2M_1 \equiv 1 \pmod{3}, which gives M1=2M_1 = 2.

  2. For 39M21(mod5)39M_2 \equiv 1 \pmod{5}: 394(mod5)39 \equiv 4 \pmod{5} We need 4M21(mod5)4M_2 \equiv 1 \pmod{5}, which gives M2=4M_2 = 4.

  3. For 15M31(mod13)15M_3 \equiv 1 \pmod{13}: 152(mod13)15 \equiv 2 \pmod{13} We need 2M31(mod13)2M_3 \equiv 1 \pmod{13}, which gives M3=7M_3 = 7.

Step 4: Combine everything to find xx

Now we can write the solution as: xa1N1M1+a2N2M2+a3N3M3(modN)x \equiv a_1 \cdot N_1 \cdot M_1 + a_2 \cdot N_2 \cdot M_2 + a_3 \cdot N_3 \cdot M_3 \pmod{N} where a1=2a_1 = 2, a2=4a_2 = 4, and a3=6a_3 = 6.

Substitute the values: x2652+4394+6157(mod195)x \equiv 2 \cdot 65 \cdot 2 + 4 \cdot 39 \cdot 4 + 6 \cdot 15 \cdot 7 \pmod{195}

Calculate each term:

  1. 2652=2602 \cdot 65 \cdot 2 = 260
  2. 4394=6244 \cdot 39 \cdot 4 = 624
  3. 6157=6306 \cdot 15 \cdot 7 = 630

Now, add these values together: x260+624+630=1514(mod195)x \equiv 260 + 624 + 630 = 1514 \pmod{195}

Finally, reduce 15141514 modulo 195195: 1514÷195=7remainder 1491514 \div 195 = 7 \quad \text{remainder } 149 So, x149(mod195)x \equiv 149 \pmod{195}

Answer

The solution to the system is: x149(mod195)x \equiv 149 \pmod{195}

Would you like a breakdown of any specific steps or have further questions?


Related questions:

  1. What is the Chinese Remainder Theorem and how does it work for systems with pairwise coprime moduli?
  2. How can modular inverses be calculated for any congruence system?
  3. What happens if the moduli in a system of congruences are not pairwise coprime?
  4. How does one verify a solution obtained using the Chinese Remainder Theorem?
  5. Can this method be used for systems with more than three congruences?

Tip: To simplify calculations with large numbers in modular arithmetic, breaking down each term step-by-step can reduce errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Number Theory
Modular Arithmetic
Simultaneous Congruences

Formulas

Chinese Remainder Theorem formula

Theorems

Chinese Remainder Theorem

Suitable Grade Level

College Level