Math Problem Statement

Find all angles, 0° ≤ θ < 360°, that solve the following equation: sin θ = -√3/2.

Solution

To solve for all angles θ\theta in the interval 0θ<3600^\circ \leq \theta < 360^\circ where

sinθ=32,\sin \theta = -\frac{\sqrt{3}}{2},

we proceed as follows:


Step 1: Analyze the sine function

The sine function is negative in Quadrants III and IV of the unit circle because sine corresponds to the vertical coordinate (negative below the xx-axis).

The reference angle where sinθ=32\sin \theta = \frac{\sqrt{3}}{2} is 6060^\circ. This is based on standard trigonometric values.


Step 2: Determine the solutions in Quadrants III and IV

  • In Quadrant III, the angle is: θ=180+reference angle=180+60=240.\theta = 180^\circ + \text{reference angle} = 180^\circ + 60^\circ = 240^\circ.

  • In Quadrant IV, the angle is: θ=360reference angle=36060=300.\theta = 360^\circ - \text{reference angle} = 360^\circ - 60^\circ = 300^\circ.


Step 3: Verify and summarize

The two solutions in the interval 0θ<3600^\circ \leq \theta < 360^\circ are:

θ=240 and 300.\boxed{\theta = 240^\circ \text{ and } 300^\circ.}


Additional Check:

  • For θ=240\theta = 240^\circ: sin(240)=32.\sin(240^\circ) = -\frac{\sqrt{3}}{2}.
  • For θ=300\theta = 300^\circ: sin(300)=32.\sin(300^\circ) = -\frac{\sqrt{3}}{2}.

Both solutions satisfy the equation.


Let me know if you need further clarification or a graphical explanation! Here are 5 related questions for practice:

  1. Solve sinθ=32\sin \theta = \frac{\sqrt{3}}{2} for 0θ<3600^\circ \leq \theta < 360^\circ.
  2. Solve cosθ=12\cos \theta = -\frac{1}{2} for 0θ<3600^\circ \leq \theta < 360^\circ.
  3. Solve tanθ=3\tan \theta = \sqrt{3} for 0θ<3600^\circ \leq \theta < 360^\circ.
  4. Find the general solution for sinθ=32\sin \theta = -\frac{\sqrt{3}}{2} in degrees.
  5. Solve sinθ=0.5\sin \theta = -0.5 for 0θ<3600^\circ \leq \theta < 360^\circ.

Tip: Always identify the reference angle and check which quadrants the trigonometric function is positive or negative.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Unit Circle
Reference Angles
Quadrant Analysis

Formulas

sin θ = opposite / hypotenuse
Reference angle = base angle where function is positive

Theorems

Unit Circle Theorem
Symmetry of Trigonometric Functions

Suitable Grade Level

Grades 9-12