Math Problem Statement

Solve

Solution

Let's go ahead and solve each triangle in the image by finding the missing sides or angles.

Triangle 1 (Top Left):

  • Given: One angle is 4545^\circ, and one side adjacent to the angle is 10 cm.

Solution:

  • Since it's a 4545^\circ angle, the other non-right angle must also be 4545^\circ (because the angles in a triangle sum up to 180180^\circ).
  • This means the triangle is an isosceles right triangle. Thus, the two legs are equal.

Using the Pythagorean theorem: c=102+102=200=10214.14 cmc = \sqrt{10^2 + 10^2} = \sqrt{200} = 10\sqrt{2} \approx 14.14 \text{ cm}

Triangle 2 (Top Middle):

  • Given: One angle is 3030^\circ, and the hypotenuse is 8 cm.

Solution:

  • For a 3030^\circ angle, the opposite side is half of the hypotenuse: Opposite=82=4 cm\text{Opposite} = \frac{8}{2} = 4 \text{ cm}
  • The adjacent side (using Pythagorean theorem): Adjacent=8242=6416=486.93 cm\text{Adjacent} = \sqrt{8^2 - 4^2} = \sqrt{64 - 16} = \sqrt{48} \approx 6.93 \text{ cm}

Triangle 3 (Top Right):

  • Given: One angle is 6060^\circ and the side opposite this angle is 6.9 cm.

Solution:

  • Using sine: sin(60)=OppositeHypotenuseHypotenuse=6.9sin(60)7.96 cm\sin(60^\circ) = \frac{\text{Opposite}}{\text{Hypotenuse}} \Rightarrow \text{Hypotenuse} = \frac{6.9}{\sin(60^\circ)} \approx 7.96 \text{ cm}
  • For the adjacent side: cos(60)=AdjacentHypotenuseAdjacent=cos(60)×7.963.98 cm\cos(60^\circ) = \frac{\text{Adjacent}}{\text{Hypotenuse}} \Rightarrow \text{Adjacent} = \cos(60^\circ) \times 7.96 \approx 3.98 \text{ cm}

Triangle 4 (Middle Left):

  • Given: One side (adjacent to 6060^\circ) is 20 cm.

Solution:

  • Hypotenuse using cosine: cos(60)=AdjacentHypotenuseHypotenuse=20cos(60)=40 cm\cos(60^\circ) = \frac{\text{Adjacent}}{\text{Hypotenuse}} \Rightarrow \text{Hypotenuse} = \frac{20}{\cos(60^\circ)} = 40 \text{ cm}
  • Opposite side using sine: sin(60)=OppositeHypotenuseOpposite=sin(60)×4034.64 cm\sin(60^\circ) = \frac{\text{Opposite}}{\text{Hypotenuse}} \Rightarrow \text{Opposite} = \sin(60^\circ) \times 40 \approx 34.64 \text{ cm}

Triangle 5 (Middle Right):

  • Given: Hypotenuse is 15 cm, one side is unknown.

Solution:

  • If one angle is 3030^\circ, then: Opposite=152=7.5 cm\text{Opposite} = \frac{15}{2} = 7.5 \text{ cm}
  • Adjacent side: cos(30)=Adjacent15Adjacent=cos(30)×1512.99 cm\cos(30^\circ) = \frac{\text{Adjacent}}{15} \Rightarrow \text{Adjacent} = \cos(30^\circ) \times 15 \approx 12.99 \text{ cm}

Triangle 6 (Bottom Left):

  • Given: Side opposite 3030^\circ is 42 mm.

Solution:

  • Hypotenuse (double the opposite side): Hypotenuse=2×42=84 mm\text{Hypotenuse} = 2 \times 42 = 84 \text{ mm}
  • Adjacent side: cos(30)=AdjacentHypotenuseAdjacent=cos(30)×8472.75 mm\cos(30^\circ) = \frac{\text{Adjacent}}{\text{Hypotenuse}} \Rightarrow \text{Adjacent} = \cos(30^\circ) \times 84 \approx 72.75 \text{ mm}

Triangle 7 (Bottom Right):

  • Given: Angle 2222^\circ, adjacent side 15 cm.

Solution:

  • Hypotenuse using cosine: cos(22)=15HypotenuseHypotenuse=15cos(22)16.16 cm\cos(22^\circ) = \frac{15}{\text{Hypotenuse}} \Rightarrow \text{Hypotenuse} = \frac{15}{\cos(22^\circ)} \approx 16.16 \text{ cm}
  • Opposite side: sin(22)=Opposite16.16Opposite=sin(22)×16.166.06 cm\sin(22^\circ) = \frac{\text{Opposite}}{16.16} \Rightarrow \text{Opposite} = \sin(22^\circ) \times 16.16 \approx 6.06 \text{ cm}

Would you like any further explanations or need more details on the steps used?

Follow-up Questions:

  1. How can you determine which trigonometric function to use given a specific side and angle?
  2. What is the relationship between the angles and sides in a 45459045^\circ-45^\circ-90^\circ triangle?
  3. How can the sine and cosine functions be derived from the unit circle?
  4. What is the role of complementary angles in determining the sides of a triangle?
  5. How would you solve a right triangle if only one side and the right angle are known?

Tip: When solving right triangles, always cross-check your calculations by verifying that the sum of the squares of the two shorter sides equals the square of the hypotenuse.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Right Triangles
Pythagorean Theorem
Sine Function
Cosine Function

Formulas

Pythagorean theorem
Sine function
Cosine function

Theorems

Properties of 45°-45°-90° triangle
Properties of 30°-60°-90° triangle

Suitable Grade Level

High School