Math Problem Statement

Para 1-15, se proporciona información sobre los lados y/o ángulos del triángulo rectángulo Resuelve completamente el triángulo (encuentra todos los lados y ángulos que faltan) con 1 decimal.ABC

Solution

The table in the image contains information related to solving right triangles, specifically focusing on sides and angles for different problem numbers (labeled 1 to 5). The goal is to solve each triangle by finding all missing sides and angles to one decimal place.

I'll extract and solve each triangle using the given data. Let's go through them one by one.

Problem 1:

Given:

  • Angle A=90A = 90^\circ
  • Angle C=6C = 6^\circ
  • Side c=7c = 7 (assumed to be the hypotenuse because A=90A = 90^\circ)
  1. Angle BB: B=90C=906=84B = 90^\circ - C = 90^\circ - 6^\circ = 84^\circ

  2. Side aa (opposite angle AA): a=csin(C)=7sin(6)70.10450.7a = c \cdot \sin(C) = 7 \cdot \sin(6^\circ) \approx 7 \cdot 0.1045 \approx 0.7

  3. Side bb (adjacent to angle CC): b=ccos(C)=7cos(6)70.99457.0b = c \cdot \cos(C) = 7 \cdot \cos(6^\circ) \approx 7 \cdot 0.9945 \approx 7.0

Problem 2:

Given:

  • Angle A=90A = 90^\circ
  • Side a=7a = 7
  • Side c=11c = 11 (assumed to be the hypotenuse)
  1. Angle CC: sin(C)=ac=7110.6364\sin(C) = \frac{a}{c} = \frac{7}{11} \approx 0.6364 Csin1(0.6364)39.5C \approx \sin^{-1}(0.6364) \approx 39.5^\circ

  2. Angle BB: B=90C9039.5=50.5B = 90^\circ - C \approx 90^\circ - 39.5^\circ = 50.5^\circ

  3. Side bb: b=ccos(C)11cos(39.5)110.7778.5b = c \cdot \cos(C) \approx 11 \cdot \cos(39.5^\circ) \approx 11 \cdot 0.777 \approx 8.5

Problem 3:

Given:

  • Angle A=90A = 90^\circ
  • Angle B=37B = 37^\circ
  • Side b=22b = 22
  1. Angle CC: C=90B=9037=53C = 90^\circ - B = 90^\circ - 37^\circ = 53^\circ

  2. Side cc (hypotenuse): c=bcos(B)=22cos(37)220.798627.5c = \frac{b}{\cos(B)} = \frac{22}{\cos(37^\circ)} \approx \frac{22}{0.7986} \approx 27.5

  3. Side aa (opposite angle CC): a=btan(C)=22tan(53)221.32729.2a = b \cdot \tan(C) = 22 \cdot \tan(53^\circ) \approx 22 \cdot 1.327 \approx 29.2

Problem 4:

Given:

  • Angle A=90A = 90^\circ
  • Side b=6b = 6
  • Angle C=11C = 11^\circ
  1. Angle BB: B=90C=9011=79B = 90^\circ - C = 90^\circ - 11^\circ = 79^\circ

  2. Side cc (hypotenuse): c=bcos(C)=6cos(11)60.98166.1c = \frac{b}{\cos(C)} = \frac{6}{\cos(11^\circ)} \approx \frac{6}{0.9816} \approx 6.1

  3. Side aa: a=csin(C)6.1sin(11)6.10.19081.2a = c \cdot \sin(C) \approx 6.1 \cdot \sin(11^\circ) \approx 6.1 \cdot 0.1908 \approx 1.2

Problem 5:

Given:

  • Angle A=90A = 90^\circ
  • Angle C=10C = 10^\circ
  • Side c=17c = 17 (hypotenuse)
  1. Angle BB: B=90C=9010=80B = 90^\circ - C = 90^\circ - 10^\circ = 80^\circ

  2. Side aa (opposite angle CC): a=csin(C)=17sin(10)170.17363.0a = c \cdot \sin(C) = 17 \cdot \sin(10^\circ) \approx 17 \cdot 0.1736 \approx 3.0

  3. Side bb: b=ccos(C)=17cos(10)170.984816.7b = c \cdot \cos(C) = 17 \cdot \cos(10^\circ) \approx 17 \cdot 0.9848 \approx 16.7

Would you like a detailed explanation of any specific problem, or do you have any questions?

Here are five related questions:

  1. How do you determine which side is the hypotenuse in a right triangle?
  2. Why do we subtract one angle from 90° to find the other non-right angle?
  3. How does the sine function relate to the sides of a right triangle?
  4. What is the significance of knowing the hypotenuse when solving a right triangle?
  5. How can you use the cosine function to find an unknown side of a right triangle?

Tip: Always check if your calculated angles add up to 180° to confirm the accuracy of your solutions for triangles.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Right triangles
Trigonometry

Formulas

Sine function
Cosine function
Tangent function

Theorems

Pythagorean theorem

Suitable Grade Level

Grades 9-12