Math Problem Statement

Solve the given questions

Solution

Let's go through the questions from the image one by one. I'll solve them in detail.

Question 1:

In ABC\triangle ABC, right angle at BB, AB=12 cmAB = 12 \text{ cm}, and BC=5 cmBC = 5 \text{ cm}. Find the values of sinA\sin A and cosA\cos A and tanA\tan A and sinC\sin C, cosC\cos C, and tanC\tan C.

Given:

  • AB=12 cmAB = 12 \text{ cm}
  • BC=5 cmBC = 5 \text{ cm}
  • B=90\angle B = 90^\circ

Using the Pythagorean theorem:

AC=AB2+BC2=122+52=144+25=169=13 cmAC = \sqrt{AB^2 + BC^2} = \sqrt{12^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \text{ cm}

Now, calculate the trigonometric ratios:

For A\angle A:

sinA=oppositehypotenuse=BCAC=513\sin A = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{BC}{AC} = \frac{5}{13} cosA=adjacenthypotenuse=ABAC=1213\cos A = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{AB}{AC} = \frac{12}{13} tanA=oppositeadjacent=BCAB=512\tan A = \frac{\text{opposite}}{\text{adjacent}} = \frac{BC}{AB} = \frac{5}{12}

For C\angle C:

sinC=ABAC=1213\sin C = \frac{AB}{AC} = \frac{12}{13} cosC=BCAC=513\cos C = \frac{BC}{AC} = \frac{5}{13} tanC=ABBC=125\tan C = \frac{AB}{BC} = \frac{12}{5}

Question 2:

Given sinθ=35\sin \theta = \frac{3}{5}, find all other trigonometric ratios.

Since sinθ=35\sin \theta = \frac{3}{5}, let's assume a right triangle where:

  • Opposite side = 3
  • Hypotenuse = 5

To find the adjacent side, use the Pythagorean theorem:

Adjacent side=5232=259=16=4\text{Adjacent side} = \sqrt{5^2 - 3^2} = \sqrt{25 - 9} = \sqrt{16} = 4

Now, calculate the other trigonometric ratios:

cosθ=45,tanθ=34\cos \theta = \frac{4}{5}, \quad \tan \theta = \frac{3}{4} cscθ=1sinθ=53,secθ=1cosθ=54,cotθ=1tanθ=43\csc \theta = \frac{1}{\sin \theta} = \frac{5}{3}, \quad \sec \theta = \frac{1}{\cos \theta} = \frac{5}{4}, \quad \cot \theta = \frac{1}{\tan \theta} = \frac{4}{3}

Question 3:

If sinA=45\sin A = \frac{4}{5}, evaluate 1sin2Acos2A\frac{1 - \sin^2 A}{\cos^2 A}.

Given sinA=45\sin A = \frac{4}{5}, we have:

sin2A=(45)2=1625\sin^2 A = \left(\frac{4}{5}\right)^2 = \frac{16}{25}

So,

1sin2A=11625=9251 - \sin^2 A = 1 - \frac{16}{25} = \frac{9}{25}

( \cos^2 A =

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Right Triangle

Formulas

Pythagorean theorem
Trigonometric ratios

Theorems

-

Suitable Grade Level

Grades 9-12