Let's go through the questions from the image one by one. I'll solve them in detail.
Question 1:
In △ABC, right angle at B, AB=12 cm, and BC=5 cm. Find the values of sinA and cosA and tanA and sinC, cosC, and tanC.
Given:
- AB=12 cm
- BC=5 cm
- ∠B=90∘
Using the Pythagorean theorem:
AC=AB2+BC2=122+52=144+25=169=13 cm
Now, calculate the trigonometric ratios:
For ∠A:
sinA=hypotenuseopposite=ACBC=135
cosA=hypotenuseadjacent=ACAB=1312
tanA=adjacentopposite=ABBC=125
For ∠C:
sinC=ACAB=1312
cosC=ACBC=135
tanC=BCAB=512
Question 2:
Given sinθ=53, find all other trigonometric ratios.
Since sinθ=53, let's assume a right triangle where:
- Opposite side = 3
- Hypotenuse = 5
To find the adjacent side, use the Pythagorean theorem:
Adjacent side=52−32=25−9=16=4
Now, calculate the other trigonometric ratios:
cosθ=54,tanθ=43
cscθ=sinθ1=35,secθ=cosθ1=45,cotθ=tanθ1=34
Question 3:
If sinA=54, evaluate cos2A1−sin2A.
Given sinA=54, we have:
sin2A=(54)2=2516
So,
1−sin2A=1−2516=259
( \cos^2 A =