Math Problem Statement
x^2+8x+12
Solution
To solve the quadratic equation , we can use the quadratic formula:
Here, the coefficients are:
- (coefficient of )
- (coefficient of )
- (constant term)
Substituting these values into the quadratic formula:
This gives us two possible solutions:
So, the solutions are and .
Would you like more details or have any questions about this solution?
Here are five related questions to expand on this topic:
- How can you factor the quadratic equation directly?
- What is the discriminant, and how does it help determine the nature of the roots of a quadratic equation?
- How can completing the square be used to solve the quadratic equation ?
- What are the graphical interpretations of the solutions to ?
- How does the quadratic equation change if we vary the coefficient while keeping and ?
Tip: Always check your solutions by substituting them back into the original equation to ensure they satisfy the equation.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Quadratic Equations
Quadratic Formula
Discriminant
Formulas
Quadratic formula
Theorems
-
Suitable Grade Level
Grades 10-12
Related Recommendation
How to Solve Quadratic Equation x^2 + 8x + 12
Solve the Quadratic Equation x^2 + 2x - 12 = 0 using the Quadratic Formula
Solve the Quadratic Equation x^2 + 12x + 27 = 0 Easily
Solving Quadratic Equation x^2 + 8x + 12 by Factoring
Solving the Quadratic Equation x^2 + 8x + 10 = 0 Using the Quadratic Formula