Math Problem Statement

Solve for X in the equation X*A = B^T + 2X where matrices A and B are given.

Solution

The equation provided is:

XA=BT+2XX A = B^T + 2X

where: A=[433041114],B=[012321].A = \begin{bmatrix} 4 & -3 & 3 \\ 0 & 4 & 1 \\ 1 & 1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 2 & -3 \\ -2 & 1 \end{bmatrix}.

To solve for XX, let us analyze the equation:

  1. BTB^T is the transpose of matrix BB, so: BT=[022131].B^T = \begin{bmatrix} 0 & 2 & -2 \\ 1 & -3 & 1 \end{bmatrix}.

The equation becomes: XA=[022131]+2X.X A = \begin{bmatrix} 0 & 2 & -2 \\ 1 & -3 & 1 \end{bmatrix} + 2X.

Rearranging: XA2X=[022131].X A - 2X = \begin{bmatrix} 0 & 2 & -2 \\ 1 & -3 & 1 \end{bmatrix}.

Factor out XX on the left: X(A2I)=[022131],X(A - 2I) = \begin{bmatrix} 0 & 2 & -2 \\ 1 & -3 & 1 \end{bmatrix},

where II is the identity matrix. We compute A2IA - 2I first. Let me calculate this and proceed with solving for XX.import numpy as np

Define the matrices A and B

A = np.array([[4, -3, 3], [0, 4, 1], [1, 1, 4]])

B = np.array([[0, 1], [2, -3], [-2, 1]])

Compute B^T (transpose of B)

B_transpose = B.T

Compute A - 2I, where I is the identity matrix

I = np.eye(3) # 3x3 identity matrix A_minus_2I = A - 2 * I

Display results for further computation

B_transpose, A_minus_2I(array([[ 0, 2, -2], [ 1, -3, 1]]), array([[ 2., -3., 3.], [ 0., 2., 1.], [ 1., 1., 2.]]))(array([[ 0, 2, -2], [ 1, -3, 1]]), array([[ 2., -3., 3.], [ 0., 2., 1.], [ 1., 1., 2.]]))successThe matrices computed are:

  1. Transpose of BB: BT=[022131].B^T = \begin{bmatrix} 0 & 2 & -2 \\ 1 & -3 & 1 \end{bmatrix}.

  2. A2IA - 2I: A2I=[233021112].A - 2I = \begin{bmatrix} 2 & -3 & 3 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.

The equation now is: X[233021112]=[022131].X \begin{bmatrix} 2 & -3 & 3 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 2 & -2 \\ 1 & -3 & 1 \end{bmatrix}.

Next, solve for XX by multiplying both sides by the inverse of (A2I)(A - 2I). Let's compute this.# Compute the inverse of A_minus_2I A_minus_2I_inverse = np.linalg.inv(A_minus_2I)

Compute X

X = B_transpose @ A_minus_2I_inverse

Display the result

Xarray([[-2. , -4. , 4. ], [ 0.66666667, -0.33333333, -0.33333333]])array([[-2. , -4. , 4. ], [ 0.66666667, -0.33333333, -0.33333333]])successThe solution for matrix XX is:

X=[2440.670.330.33].X = \begin{bmatrix} -2 & -4 & 4 \\ 0.67 & -0.33 & -0.33 \end{bmatrix}.

If you have further questions or need explanations, let me know!


Here are 5 related questions to expand your understanding:

  1. How is the inverse of a matrix computed and why is it important in this solution?
  2. What properties of transpose matrices are critical for solving equations like this?
  3. How would the solution change if AA was not invertible (singular)?
  4. Can you verify the solution by substituting XX back into the original equation?
  5. What are the applications of such matrix equations in real-world scenarios?

Tip: Always check the invertibility of a matrix before computing its inverse to avoid undefined operations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Equations
Matrix Transposition
Matrix Inverse

Formulas

Matrix equation: X*A = B^T + 2X
Transpose of a matrix: B^T
Matrix inversion: X = (A - 2I)^(-1) * B^T

Theorems

Properties of matrix operations
Invertibility of matrices

Suitable Grade Level

Undergraduate (Linear Algebra Course)