Math Problem Statement
Solution
The uploaded image contains multiple-choice mathematical questions in Russian. Below are the solutions and explanations for each question:
Question 3:
Функция на всей области определения является
четной, нечетной, возрастающей, убывающей.
Solution:
The function is an exponential function with base greater than 1, so it is strictly increasing over its entire domain (). Hence, the correct answer is:
( в) возрастающей.
Question 4:
Область определения функции является промежуток
( а) (-\infty, +\infty),; б) [-2, 2],; в) (0, +\infty),; г) [-1, 1].
Solution:
The cosine function is defined for all real numbers (). Therefore, the domain of is also the entire real line. The correct answer is:
( а) (-\infty, +\infty).
Question 5:
Областью значений функции является промежуток
( а) (0, 3),; б) (-\infty, +\infty),; в) [-3, 3],; г) [-1, 1].
Solution:
The cosine function oscillates between -1 and 1. For , this range is scaled by 3, so the values of lie within . The correct answer is:
( в) [-3, 3].
Question 6:
Множество —область изменения функции называется областью
( а) значений функции,; б) определения функции,; в) возрастания функции,; г) убывания функции.
Solution:
The range (область значений) of a function is the set of all possible output values . Hence, the correct answer is:
( а) значений функции.
Question 7:
Если функция задана аналитически, то ей соответствует
( а) координаты,; б) таблица,; в) формула,; г) график.
Solution:
An analytical definition of a function involves a formula that specifies the relationship between and . Therefore, the correct answer is:
( в) формула.
Do you want further explanations for any of these solutions? Let me know!
Related Questions:
- What properties differentiate even and odd functions?
- How does the base of an exponential function affect its growth?
- What transformations affect the domain and range of trigonometric functions?
- How do you determine the domain of a composite function?
- Why is it important to analyze the behavior of functions visually using graphs?
Tip:
For trigonometric functions like , always consider both the amplitude and the periodicity to determine the range and behavior accurately!
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Exponential functions
Trigonometric functions (cosine)
Domain and range of functions
Properties of functions (even, odd, increasing, decreasing)
Analytical representations of functions
Formulas
Exponential function: y = a^x
Cosine function: y = a * cos(x)
Theorems
Properties of exponential functions (e.g., monotonicity for base > 1)
Range scaling for trigonometric functions
Suitable Grade Level
Grades 9-11
Related Recommendation
Solve Mathematical Expressions Involving Exponential and Trigonometric Functions
Exponential and Logarithmic Functions - Domain, Range, and Inverses
Exponential and Logarithmic Functions: Graphs, Inequalities, and Solutions
Mathematics Exercises: Domain of Definition, Function Composition, and Limits
Master Math: Square Roots, Exponentials, and Trigonometry