Math Problem Statement

The user submitted a set of math-related multiple-choice questions in Russian, including topics such as exponential and trigonometric functions, their domains, ranges, and properties.

Solution

The uploaded image contains multiple-choice mathematical questions in Russian. Below are the solutions and explanations for each question:


Question 3:

Функция y=6xy = 6^x на всей области определения является
a)a) четной, б)б) нечетной, в)в) возрастающей, г)г) убывающей.

Solution:
The function y=6xy = 6^x is an exponential function with base greater than 1, so it is strictly increasing over its entire domain (x(,+)x \in (-\infty, +\infty)). Hence, the correct answer is:
( в) возрастающей.


Question 4:

Область определения функции y=cosxy = -\cos{x} является промежуток
( а) (-\infty, +\infty),; б) [-2, 2],; в) (0, +\infty),; г) [-1, 1].

Solution:
The cosine function is defined for all real numbers (x(,+)x \in (-\infty, +\infty)). Therefore, the domain of y=cosxy = -\cos{x} is also the entire real line. The correct answer is:
( а) (-\infty, +\infty).


Question 5:

Областью значений функции y=3cosxy = 3\cos{x} является промежуток
( а) (0, 3),; б) (-\infty, +\infty),; в) [-3, 3],; г) [-1, 1].

Solution:
The cosine function cosx\cos{x} oscillates between -1 and 1. For y=3cosxy = 3\cos{x}, this range is scaled by 3, so the values of yy lie within [3,3][-3, 3]. The correct answer is:
( в) [-3, 3].


Question 6:

Множество YY—область изменения функции называется областью
( а) значений функции,; б) определения функции,; в) возрастания функции,; г) убывания функции.

Solution:
The range (область значений) of a function is the set of all possible output values yy. Hence, the correct answer is:
( а) значений функции.


Question 7:

Если функция задана аналитически, то ей соответствует
( а) координаты,; б) таблица,; в) формула,; г) график.

Solution:
An analytical definition of a function involves a formula that specifies the relationship between xx and yy. Therefore, the correct answer is:
( в) формула.


Do you want further explanations for any of these solutions? Let me know!

Related Questions:

  1. What properties differentiate even and odd functions?
  2. How does the base of an exponential function affect its growth?
  3. What transformations affect the domain and range of trigonometric functions?
  4. How do you determine the domain of a composite function?
  5. Why is it important to analyze the behavior of functions visually using graphs?

Tip:

For trigonometric functions like y=acosxy = a\cos{x}, always consider both the amplitude and the periodicity to determine the range and behavior accurately!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponential functions
Trigonometric functions (cosine)
Domain and range of functions
Properties of functions (even, odd, increasing, decreasing)
Analytical representations of functions

Formulas

Exponential function: y = a^x
Cosine function: y = a * cos(x)

Theorems

Properties of exponential functions (e.g., monotonicity for base > 1)
Range scaling for trigonometric functions

Suitable Grade Level

Grades 9-11