Math Problem Statement

Answer all questions

Solution

Let's tackle the questions one by one:

1. Solve the linear system

x+y=4x + y = 4 3xy=83x - y = 8

First, add the two equations to eliminate yy: x+y+3xy=4+8x + y + 3x - y = 4 + 8 4x=124x = 12 x=3x = 3

Now, substitute x=3x = 3 into the first equation to find yy: 3+y=43 + y = 4 y=1y = 1

So, the solution to the system is: x=3,  y=1x = 3, \; y = 1

2. Matrix Operations

Given: A=(803113),A = \begin{pmatrix} 8 & 0 & -3 \\ 1 & -1 & 3 \end{pmatrix}, B=(210593),B = \begin{pmatrix} 2 & 1 & 0 \\ 5 & 9 & 3 \end{pmatrix}, C=(5267)C = \begin{pmatrix} 5 & 2 \\ 6 & -7 \end{pmatrix}

a) Find A+BA + B: A+B=(8+20+13+01+51+93+3)=(1013686)A + B = \begin{pmatrix} 8 + 2 & 0 + 1 & -3 + 0 \\ 1 + 5 & -1 + 9 & 3 + 3 \end{pmatrix} = \begin{pmatrix} 10 & 1 & -3 \\ 6 & 8 & 6 \end{pmatrix}

b) Find CACA: C=(5267)C = \begin{pmatrix} 5 & 2 \\ 6 & -7 \end{pmatrix} A=(803113)A = \begin{pmatrix} 8 & 0 & -3 \\ 1 & -1 & 3 \end{pmatrix} Since the matrices CC and AA are not conformable for multiplication (dimensions do not match), this operation is not possible.

3. Find the inverse of the matrix

(3183)\begin{pmatrix} 3 & 1 \\ 8 & 3 \end{pmatrix}

The inverse of a 2x2 matrix (abcd)\begin{pmatrix} a & b \\ c & d \end{pmatrix} is given by: 1adbc(dbca)\frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}

For the matrix (3183)\begin{pmatrix} 3 & 1 \\ 8 & 3 \end{pmatrix}: a=3,  b=1,  c=8,  d=3a = 3, \; b = 1, \; c = 8, \; d = 3 adbc=3318=98=1ad - bc = 3 \cdot 3 - 1 \cdot 8 = 9 - 8 = 1

Thus, the inverse is: (3183)\begin{pmatrix} 3 & -1 \\ -8 & 3 \end{pmatrix}

4. Find the determinant of the matrix

a) (9383)\begin{pmatrix} 9 & 3 \\ 8 & 3 \end{pmatrix} Det=(93)(38)=2724=3\text{Det} = (9 \cdot 3) - (3 \cdot 8) = 27 - 24 = 3

b) (100101243)\begin{pmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \\ 2 & 4 & -3 \end{pmatrix} The determinant of a 3x3 matrix (abcdefghi)\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} is: a(eifh)b(difg)+c(dheg)a(ei - fh) - b(di - fg) + c(dh - eg)

For the given matrix: a=1,  b=0,  c=0,  d=1,  e=0,  f=1,  g=2,  h=4,  i=3a = 1, \; b = 0, \; c = 0, \; d = -1, \; e = 0, \; f = 1, \; g = 2, \; h = 4, \; i = -3 Det=1(0314)0(1312)+0(1402)\text{Det} = 1(0 \cdot -3 - 1 \cdot 4) - 0(-1 \cdot -3 - 1 \cdot 2) + 0(-1 \cdot 4 - 0 \cdot 2) Det=1(04)=4\text{Det} = 1(0 - 4) = -4

The determinant is 4-4.

Would you like more details on any of these solutions, or do you have any other questions? Here are some follow-up questions you might be interested in:

  1. Can you explain how to solve a system of equations using matrix methods?
  2. What are some properties of determinants in matrix algebra?
  3. How do you find the inverse of a larger matrix?
  4. What is the significance of a matrix determinant being zero?
  5. Can you show the steps for multiplying two matrices?

**Tip

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Equations
Matrix Operations
Matrix Inverse
Matrix Determinant

Formulas

Linear system solution
Matrix addition
Matrix multiplication rules
Matrix inverse formula
Matrix determinant formula

Theorems

Properties of determinants
Inverse matrix theorem

Suitable Grade Level

Advanced High School