Math Problem Statement
Solution
I can analyze the content of your image and solve the mathematical problems. Let’s proceed step-by-step.
Question Analysis and Solution:
(a) Tentukan sama ada dua matriks berikut SAMA atau TIDAK
- (i) Matriks pertama: 1 & -4 & 5 \\ 2 & 8 & 7 \end{bmatrix}$$ **dan matriks kedua:** $$\begin{bmatrix} 1 & -4 & 5 \\ 2 & 8 & 7 \end{bmatrix}$$ These matrices are identical. **Answer:** Sama.
- (ii) Matriks pertama: 7 & 2 \\ 1 & 5 \end{bmatrix}$$ **dan matriks kedua:** $$\begin{bmatrix} 3.5 & 3 \\ 0.2 & 4 \end{bmatrix}$$ These matrices are not identical. **Answer:** Tidak sama.
(b) Diberi matriks dan , cari:
- : Transpose of : 3 & 2 \\ 1 & 0 \end{bmatrix}$$ $$B^T = \begin{bmatrix} 3 & 1 \\ 2 & 0 \end{bmatrix}$$
- : Given: 3 & -4 \\ 1 & 2 \end{bmatrix}$$ Calculate determinant: $$\text{det}(A) = (3)(2) - (1)(-4) = 6 + 4 = 10$$ Inverse: $$A^{-1} = \frac{1}{\text{det}(A)} \begin{bmatrix} 2 & 4 \\ -1 & 3 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 2 & 4 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 0.2 & 0.4 \\ -0.1 & 0.3 \end{bmatrix}$$
- : Transpose of : 3 & 1 \\ -4 & 2 \end{bmatrix}$$ Multiply $$B$$ by 3: $$3B = 3 \cdot \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 9 & 6 \\ 3 & 0 \end{bmatrix}$$ Add: $$A^T + 3B = \begin{bmatrix} 3 & 1 \\ -4 & 2 \end{bmatrix} + \begin{bmatrix} 9 & 6 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 12 & 7 \\ -1 & 2 \end{bmatrix}$$
(c) Cari nilai :
Summary of Answers:
(a) (i) Sama, (ii) Tidak sama
(b) (i) ,
(ii) ,
(iii)
(c)
Would you like further explanations or details on any of these?
Related Questions:
- How do you calculate the inverse of a 2x2 matrix systematically?
- What are the properties of matrix transpose operations?
- How does scalar multiplication of a matrix affect its determinant?
- Why is it important to check the determinant before finding the inverse of a matrix?
- How do you solve linear equations using matrices?
Tip:
When finding the inverse of a matrix, always ensure the determinant is non-zero; otherwise, the matrix is not invertible.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Matrix Equality
Matrix Transpose
Matrix Inverse
Matrix Addition
Linear Equations
Formulas
Matrix Transpose: (A^T)ij = Aji
Matrix Inverse (2x2): A^-1 = (1/det(A)) * [d, -b; -c, a]
Matrix Addition: C = A + B, where Cij = Aij + Bij
Determinant of a 2x2 Matrix: det(A) = ad - bc
Linear Equation: r * x + y = z
Theorems
Properties of Transpose
Determinant and Invertibility
Matrix Equality
Suitable Grade Level
Grades 10-12
Related Recommendation
Solving Matrices, Determinants, and Systems of Equations
Solve Linear Algebra Tasks: Determinants and Matrices
Matrix Operations and Solving Equations Involving Matrices
Solving Systems of Equations and Matrix Operations with Parameters
Matrix Operations and Linear Equations: Solve Problems Step-by-Step