Math Problem Statement

Diberi dua matriks dan operasi yang perlu dijalankan seperti transpos, songsangan, dan persamaan linear melibatkan parameter r.

Solution

I can analyze the content of your image and solve the mathematical problems. Let’s proceed step-by-step.

Question Analysis and Solution:

(a) Tentukan sama ada dua matriks berikut SAMA atau TIDAK

  1. (i) Matriks pertama: 1 & -4 & 5 \\ 2 & 8 & 7 \end{bmatrix}$$ **dan matriks kedua:** $$\begin{bmatrix} 1 & -4 & 5 \\ 2 & 8 & 7 \end{bmatrix}$$ These matrices are identical. **Answer:** Sama.
  2. (ii) Matriks pertama: 7 & 2 \\ 1 & 5 \end{bmatrix}$$ **dan matriks kedua:** $$\begin{bmatrix} 3.5 & 3 \\ 0.2 & 4 \end{bmatrix}$$ These matrices are not identical. **Answer:** Tidak sama.

(b) Diberi matriks AA dan BB, cari:

  1. BTB^T: Transpose of BB: 3 & 2 \\ 1 & 0 \end{bmatrix}$$ $$B^T = \begin{bmatrix} 3 & 1 \\ 2 & 0 \end{bmatrix}$$
  2. A1A^{-1}: Given: 3 & -4 \\ 1 & 2 \end{bmatrix}$$ Calculate determinant: $$\text{det}(A) = (3)(2) - (1)(-4) = 6 + 4 = 10$$ Inverse: $$A^{-1} = \frac{1}{\text{det}(A)} \begin{bmatrix} 2 & 4 \\ -1 & 3 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 2 & 4 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 0.2 & 0.4 \\ -0.1 & 0.3 \end{bmatrix}$$
  3. AT+3BA^T + 3B: Transpose of AA: 3 & 1 \\ -4 & 2 \end{bmatrix}$$ Multiply $$B$$ by 3: $$3B = 3 \cdot \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 9 & 6 \\ 3 & 0 \end{bmatrix}$$ Add: $$A^T + 3B = \begin{bmatrix} 3 & 1 \\ -4 & 2 \end{bmatrix} + \begin{bmatrix} 9 & 6 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 12 & 7 \\ -1 & 2 \end{bmatrix}$$

(c) Cari nilai rr:

r1+14=7r \cdot 1 + 1 \cdot 4 = 7 r+4=7r + 4 = 7 r=3r = 3


Summary of Answers:

(a) (i) Sama, (ii) Tidak sama
(b) (i) BT=[3120]B^T = \begin{bmatrix} 3 & 1 \\ 2 & 0 \end{bmatrix},
(ii) A1=[0.20.40.10.3]A^{-1} = \begin{bmatrix} 0.2 & 0.4 \\ -0.1 & 0.3 \end{bmatrix},
(iii) AT+3B=[12712]A^T + 3B = \begin{bmatrix} 12 & 7 \\ -1 & 2 \end{bmatrix}
(c) r=3r = 3

Would you like further explanations or details on any of these?


Related Questions:

  1. How do you calculate the inverse of a 2x2 matrix systematically?
  2. What are the properties of matrix transpose operations?
  3. How does scalar multiplication of a matrix affect its determinant?
  4. Why is it important to check the determinant before finding the inverse of a matrix?
  5. How do you solve linear equations using matrices?

Tip:

When finding the inverse of a matrix, always ensure the determinant is non-zero; otherwise, the matrix is not invertible.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Equality
Matrix Transpose
Matrix Inverse
Matrix Addition
Linear Equations

Formulas

Matrix Transpose: (A^T)ij = Aji
Matrix Inverse (2x2): A^-1 = (1/det(A)) * [d, -b; -c, a]
Matrix Addition: C = A + B, where Cij = Aij + Bij
Determinant of a 2x2 Matrix: det(A) = ad - bc
Linear Equation: r * x + y = z

Theorems

Properties of Transpose
Determinant and Invertibility
Matrix Equality

Suitable Grade Level

Grades 10-12