Math Problem Statement

Solve the integration

Solve the integration \( \int \frac{dx}{1 + \sin x} \).

Solution

The given integral is:

dx1+sinx.\int \frac{dx}{1 + \sin x}.

Let's solve this step-by-step.


Step 1: Use a standard identity

We can simplify 1+sinx1 + \sin x by multiplying the numerator and the denominator by (1sinx)(1 - \sin x). This is a common technique used to rationalize trigonometric expressions:

dx1+sinx1sinx1sinx=(1sinx)dx(1+sinx)(1sinx).\int \frac{dx}{1 + \sin x} \cdot \frac{1 - \sin x}{1 - \sin x} = \int \frac{(1 - \sin x) \, dx}{(1 + \sin x)(1 - \sin x)}.


Step 2: Simplify the denominator

Using the identity (1+sinx)(1sinx)=1sin2x=cos2x(1 + \sin x)(1 - \sin x) = 1 - \sin^2 x = \cos^2 x, the expression becomes:

(1sinx)dxcos2x.\int \frac{(1 - \sin x) \, dx}{\cos^2 x}.


Step 3: Split the fraction

Split the integral into two simpler integrals:

(1cos2xsinxcos2x)dx.\int \left( \frac{1}{\cos^2 x} - \frac{\sin x}{\cos^2 x} \right) dx.

This can be written as:

sec2xdxsec2xsinxdx.\int \sec^2 x \, dx - \int \sec^2 x \sin x \, dx.


Step 4: Integrate the terms

  1. First Term: The integral of sec2x\sec^2 x is:

    sec2xdx=tanx.\int \sec^2 x \, dx = \tan x.

  2. Second Term: For sec2xsinxdx\int \sec^2 x \sin x \, dx, use the substitution u=sinxu = \sin x, so du=cosxdxdu = \cos x \, dx. This integral becomes:

    sec2xsinxdx=sinxcos2xdx.\int \sec^2 x \sin x \, dx = \int \frac{\sin x}{\cos^2 x} \, dx.

    Let u=sinxu = \sin x, so du=cosxdxdu = \cos x \, dx. The expression turns into:

    [ \int \frac{u}{\cos^2 x} \cdot \cos x , du = \text{(Calculate simplifications next

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Identities
Substitution Method

Formulas

\( (1 + \sin x)(1 - \sin x) = \cos^2 x \)
\( \int \sec^2 x \, dx = \tan x \)
Substitution: \( u = \sin x, du = \cos x \, dx \)

Theorems

Trigonometric Identities
Basic Integration Rules

Suitable Grade Level

Grades 11-12