Math Problem Statement

Evaluate the integral \( \int \frac{\sin 2x}{1 + \sin^2 x} \, dx \).

Solution

To solve the integral:

sin2x1+sin2xdx\int \frac{\sin 2x}{1 + \sin^2 x} \, dx

Step-by-Step Solution

  1. Rewrite sin2x\sin 2x: Recall that sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x. Substitute this identity: 2sinxcosx1+sin2xdx\int \frac{2 \sin x \cos x}{1 + \sin^2 x} \, dx

  2. Substitute for uu: Let u=sinxu = \sin x. Then, du=cosxdxdu = \cos x \, dx.

    Substitute uu and dudu into the integral: 2ucosx1+u2dxcosx\int \frac{2u \cos x}{1 + u^2} \cdot \frac{dx}{\cos x} Simplifying, the cosx\cos x terms cancel, leaving: 2u1+u2du\int \frac{2u}{1 + u^2} \, du

  3. Simplify the Integral: Now, we have: 2u1+u2du\int \frac{2u}{1 + u^2} \, du This can be separated as: 2u1+u2du2 \int \frac{u}{1 + u^2} \, du

  4. Integrate: Notice that u1+u2\frac{u}{1 + u^2} has a standard form where the integral of u1+u2\frac{u}{1 + u^2} is 12ln1+u2\frac{1}{2} \ln |1 + u^2|.

    So, 2u1+u2du=212ln1+u2=ln1+u22 \int \frac{u}{1 + u^2} \, du = 2 \cdot \frac{1}{2} \ln |1 + u^2| = \ln |1 + u^2|

  5. Back-substitute u=sinxu = \sin x: Replace uu with sinx\sin x to get the final answer: sin2x1+sin2xdx=ln1+sin2x+C\int \frac{\sin 2x}{1 + \sin^2 x} \, dx = \ln |1 + \sin^2 x| + C

Final Answer

sin2x1+sin2xdx=ln1+sin2x+C\int \frac{\sin 2x}{1 + \sin^2 x} \, dx = \ln |1 + \sin^2 x| + C

Would you like more details on any step, or have any other questions?

Related Questions

  1. How do we handle integrals with trigonometric identities?
  2. What substitution techniques are helpful for integrals involving trigonometric functions?
  3. Can you explain the integration of rational functions with trigonometric terms?
  4. How does substitution simplify integrals in general?
  5. What is the process to verify the result of an indefinite integral?

Tip

When you encounter a trigonometric integral, always consider substituting using identities or common functions to simplify the integral before solving.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Integration
Substitution in Integrals

Formulas

\( \sin 2x = 2 \sin x \cos x \)
\( \int \frac{u}{1 + u^2} \, du = \frac{1}{2} \ln |1 + u^2| \)

Theorems

Logarithmic Integration Rule
Trigonometric Identities

Suitable Grade Level

Grades 11-12